l,

SPECTRUM

SYSTEMENTWICKLUNG MICROELECTRONIC GMBH

M2i.20xx
M2i.20xx-exp

fast 8 bit transient recorder,
A/D converter board
for PCI-X, PCI and PCI Express bus

Hardware Manual
Software Driver Manual

English version November 27, 2008

SPECTRUM SYSTEMENTWICKLUNG MICROELECTRONIC GMBH - AHRENSFELDER WEG 13-17 - 22927 GROSSHANSDORF - GERMANY
PHONE: +49 (0)4102-6956-0 - FAX: +49 (0)4102-6956-66 - EMAIL: info@spec.de - INTERNET: http://www.spectrum-instrumentation.com

(c) SPECTRUM SYSTEMENTWICKLUNG MICROELECTRONIC GMBH
AHRENSFELDER WEG 13-17, 22927 GROSSHANSDORF, GERMANY
SBench is a registered trademark of Spectrum Systementwicklung Microelectronic GmbH.

Microsoft, Visual C++, Visual Basic, Windows, Windows 98, Windows NT, Window 2000 and Windows XP are trademarks/registered
trademarks of Microsoft Corporation.

LabVIEW, DASYLab, Diadem and LabWindows/CVI are trademarks/registered trademarks of National Instruments Corporation.
MATLAB is a trademark/registered trademark of The Mathworks, Inc.
Agilent VEE, VEE Pro and VEE Onelab are trademarks/registered trademarks of Agilent Technologies, Inc.

FlexPro is a registered trademark of Weisang GmbH & Co. KG.

Introduction... 8
PG . e
OVBIVIBW ...ttt e oot e e ettt e e e e e ettt e e e e ettt e e e e e e e e et e ee e e e ettt e e e e ettt e e e ee ettt e eeeet b e aeeearaaas
General Informationccoeeiiii .
Different models of the M2i.20xx series ..
Additional options....

Star-Hub ...
BaseXIO (asynchronous digital 1/0)..
The SPECITUM TYPE PlOEeeee ettt et ettt et e et e ettt e e e e st ettt et e et e et e et e et e e e ennes
HArAWAre N OIMOEON. ... oo e e
Block diagram
TECRNICAI DIAtA ... et
DyNamIC PArGMEIEIS ..ottt
O INFOIMGIIONt

SYSIEM REGUITEMENTS ...ttt ettt e ettt e e e e ettt et e e e ettt e e e e e e ettt eeeeeeeeaannee

Warnings........coooviiiiiiiii
ESD Precautionsc.cccccevciieennis
Cooling Precautions...........c........

Sources of Noisecccoeeeereiennnn.

Installing the board in the system
Installing a single board Without Ny OPHONSiiiiieiii ettt neee s
Installing a board with digital iNPULS/OUIPUIS..........cuiiiiii e
Installing a board with option BaseXIO
Installing multiple boards synchronized by star-hub

Software Driver INStallation c.cccecceccecceceececcsecsceccscssccsccecsessessccsssesscsscsssssssosscsssssssesscsssssssss 20
Interrupt ShAringcooveriieniiinieeeee
Windows 2000
Installation
Version control ...
Driver - Update..........
Windows XP 32/64 Bit ...
Installation
Version control ...

OVervIeWccocviiiiiiiiiiiiice
Standard Driver Installation
StANAAI DIIVET UPAGIEevieie ettt ettt et ettt et e e bt e st es e e st e bt e bt eneeeee e et e st ebeeneeeneeeeeas
Compilation of kernel driver sources (option)
LIBrary .o
Control Center ...

Softwqre 000 28
SOFWAIE OVEIVIEW ...ttt ettt ettt ettt et e h e et h ekt e et eh e ekt e ekt e st e e et eebe et e e et ettt e et e et en
CArd CONTOl CONIET ...ttt ettt et et a et e bttt et ettt nbe e et ettt nae e

Hardware information.....................
Firmware information
Driver information
Installing and removing Demo cards .
Debug logging for support cases......
e T CRT]oTe e T LY PSSP BRSO
FITMWEAIE UPGIOGE ...ttt ettt ettt a ettt ettt ettt
Performing card calibration
PErfOrMING MEMOTY HESt ... euiiitieitiet ettt ettt ettt ettt ettt e bt e s e et e ebe e st e st esbeesee e et e nbeeeseenbeensesaeeneeens
e T T=T=e [ST PSRRI
Compatibility Layer

UsSAGE MOAESvviiiiieiiieeiii et
Abilities and Limitations of the compatibility DLL
Accessing the cards with SBench 5.x.........ccccoooiiviiiinnn.
C/C++ Driver Interface
HEOAEr fIlES ... e
General Information on WiIindows 64 bit drivers..............oooiiiiiieiiii e
Microsoft Visual C++ 6.0 and 2005 32 Bit
MICTOSOFt VISUGH Ct G4 Bit.ooooeee e e
Borland Ca4 BUIlder 32 Bitoveeiiiiiiiieeee e
Linux Gnu C/C++ 32/64 Bit
Catfor INET ..o,
Other Windows C/C++ compilers 32 Bit...................
Other Windows C/C++ compilers 64 Bit...................
National Instruments LabWindows/CVI
Driver functionsoocoviiiiiiiiiiiieieiins
Borland Delphi (Pascal) Programming Interface
Driver interfaceooeiieiiii e
EXAMIPIES -ttt a et h e h et et E Rttt a e et ekttt et a e h e bt ettt e e
Visual Basic Programming Interface and EXAMPIESco.iiiiiiiiiiiiieit ettt ettt
Driver interface
EXQMIPIES -ttt ettt a ettt E e E ettt e h e h ettt e a e at bt ettt
.NET programming languages
Library ..oooeveeeiciee

Declaration
Using CH..ooveiieiiieiie
Using Managed C++/ClLI
Using VB.NET ...,

USING oottt et e e e s

Programming the Boardeeeeeeeeiineeciieenccennecisneseseessneesssecsssaecsssscssssessssscsssssessssessssees 46
Overview
REGISIEr TADIES ...ttt ettt e eate e s
ProOgramMMING @XAMPIES.iiiiiieii ittt ettt ettt
Initialization................
Error handling
Gathering information from the card....

Card type ..oeveeieiieeeee e
Hardware version............cc.ccco.....
Production datecccceceeniinne
Last calibration date...........ccceueenee.

Serial number ...

Maximum possible SAMPIING FAIEoiiiiii ettt ettt et
INSHAIEA MEMOTY ...ttt ettt ettt ettt ettt ekt e ekt e e e s e h ekt e et emt e e ne e ae et e et e et eeaee e en
Installed features and options

USEA TYPE OF AFIVET ..ottt ettt ettt ettt ettt bt ab ettt e bt eeht e enb e e etbeeeaeeeaee s

Analog Inputs.. 52
Channel Selectioncccccoevieniiniincn.

Important note on channels selection

Setting up the iNputscoovviiiiiiiiiie

Input ranges

IPUE OFFSEE ..ottt ettt ettt h e bttt eeab e et e et b e e ha et e e tbeeeaeeeaee s

INPUE FEIMINGON. ...ttt e e ettt e e e ettt e e e e et e e e e e e

Automatic adjustment of the offset settings

Acquisition modes 000 57
OVBIVIEW ... ettt e oo h et e ettt e et e e et e et e et e
SEHUP OF the MOAE ...ttt ettt ettt ettt e nb e a et ke bt nb ettt ae e bt enteeaeas
Commands.................
Card Status
Acquisition cards status overview
Generation card status overview
Data Transfercccceverienicencne
Standard Single ACqUISIHON MOAEiiiiiii ettt ettt et et e et ettt
(Ore T 1o [PPSR
Memory, Pre- and Postirigger
oo 1T o LTSS PSRBT
FIFO Single acqUISIION MOEiiuiiiiieiii ettt ettt ettt ettt ekttt et b e e e et e bt et esbeeneeeneeeneenee e
Card mode........ooviiienieiiii,
Length and Pretrigger
Difference to standard single acquisition mode
EXAMPIE .o
Limits of pre trigger, post frigger, memory size
BUFEr RONAIING. ...ttt ettt eh ettt et
[DeT (ool feTeTa T ToY s H PP PO PP PUPPPPPPPPRPPRE
SAMPIE FOTMAE ..ttt ettt ettt ettt et at et e bt e s b e e st e ekt ekt e bt b e st ekt ekt e ekt ab e st e eae e bt e bt enbeenteeneenaeen

Clock gENErationcceeecceeeeccnneccnneecceneecssnecsessecssseesssseessssecsssscssssasssssssssssessssssssssssssssesssseess O9
OVEIVIBW ...ttt ettt e oottt e e e e e ettt et e e e e e aet bttt e e e e e e e netae et e e e e e e et he et e e e e e e e R et bt e eeee e e ntat et e e e e e e nntateeeeeeeaanneeee
The different clock modes
ClOCK MOAE REGISIET ...ttt ettt ettt e et e o2t e e et e e et ettt e bt e e at e ettt e e st e eaae et e et e enneeenees
Internally generated SAMPIING FOTE........eiiiiiiii ettt ettt et ettt ettt
Standard internal sampling clock (PLL)...
Using plain Quartz1 without PLL
Using plain Quartz2 without PLL (optional)
External reference clock
Oversamplingcooovvevieiiieiiee,
EXIEINGL ClOCKING 1.ttt ettt ettt ettt s et bttt b et n et eeae e enes
Direct @XtErNQAI CIOCKiiiiiiiii ittt ettt ettt
External clock With dividercooiiiiii e

Trigger modes and appendant registerscccceereecernecccseecceseccssseccsseecsssecsssecssssessssscsssseees 70
General Description
Trigger Engine Overview..
L 1o L 1aTs YIRS PP

L 1o T O 1T T USSP

Trigger AND mask.
Software frigger
Force- and Enable trigger
Delay triggerccoe.....
External TTL trigger......ccocvvvveevieenneene,

Edge and 1@Vl fIGQErsot e

PUISEWIATh HrIGGEIS ..ottt ettt ettt ettt ettt ettt et et ettt e et e eabeeaee s
Channel Trigger......coovveviieiieiiecie e

Overview of the channel trigger registers

THGQET LBVEL. ...ttt

Pulsewidth counter...........c.ocooiiiiiiiiii,

Detailed description of the channel trigger modes

Option Multiple Recording/Replayccceceeeecsreccseccseccssecsseccsscsseesssesssecssssssssssssssssssssssssescsess 94
RECOTdiNG MOMESiiiiiiiiiiciii et
Standard Mode
FIFO MOTE ...ttt ettt ettt a ettt ettt ettt n et nnee s
Limits of pre frigger, POst IrIgQer, MEMOTY SIZEiiiuieiiiiiiiii ettt ettt ettt b ettt et s e nee e e et e anee 95
Multiple Recording and Timestamps
THGGET MOTES ...ttt ettt ettt ettt ekt e a o2 ekttt a e et R ekt b e en e ee e Rt ekt et e nt e ent et e e ene e bt et et naeen
TEIGGET OUIPUL ...ttt ettt h e ettt e ettt e ettt e ettt e et e e
PrOgraMMING EXAMPIES . ..c..eiueiiiiiit ettt ettt h e bt ettt et b ettt ae ettt

Option Gated SAMPliNG/RePIaY .ccccceeecereceseccsesseccssesssesssesssscsssssssesssessssssssssssssssssssssssesssssss 97
ACQUISTION MOTES ..ottt ettt e e ekttt e a e oot eh e ekt et e ea e eh e et e et e et e enb e et et e st e bt et eneeneean
SEHANAAIA MOAE ... ettt et ettt ettt
FIFO MOde ..o
Limits of pre trigger, post frigger, memory size
Gated Sampling and Timestamps

Trigger Outputccovviiieiiiiiieie.
Edge and level triggers
PUISEWIATH HFIGGEIS ...ttt ettt ettt ettt ettt
Channel triggers modes
Programming EXAMPIES.......c.iiiiiiiiii ittt ettt

OPHion TIMeESTaMPS..cceccrecceeceeeccsecssecsseesseecssesssecssessssesssssssssssessssssssesssssssessssssssssssssssescses 108
General information

LIMIEES e s
Timestamp modes........
Standard mode
StartReset mode
Refclock mode (needs BaseXIO option) .
Reading out the timestampsccce..
GENETAL. ... e e
Data Transfer Using DIMA L......co.i ittt ettt ettt ettt
Data Transfer using Pollingcccoooiiiiiiiiii.
Comparison of DMA and polling commands
DA FOMMIQE -ttt et ettt ettt ettt bt a ettt ettt ae ettt ettt nae s
Combination of Multiple Recording and Gated Sampling with Timestamps
Multiple Recording and Timestamps............eeriiiriiiiiiesii e
Example Multiple Recording and Timestamps

Gated Sampling and Timestampsccccevieiiereenenn
Example Gated Sampling and TIMESIAMPSc.vviiiiiiiie ettt ettt ettt ettt et et eenee s
Option ABA mode (dual Hmebase)...ccccccerecseecsreccsecsseccseccssecssecssscsssesssesssessssssssessssssecses 118
General information 118
Standard Mode

FIFO MOGE ... et
Limits of pre frigger, Post IrigQer, MEMOTY SIZEcuiiiiiiiieti ettt ettt ettt ettt ettt ettt et et e bt eeenee e saeeeneennes
Example for sefting ABA mode:cccceevieiriiinnnnnn.
REAAING OUE ABA A0 ...ttt ettt ettt ettt etttk e ettt e ke ettt e b e e ettt ettt ettt et e ettt et e e e enn e
GBNETAL. ...ttt
Data Transfer using DMA
Data Transfer using Polling
Comparison of DMA and polling commands

Option BaseXlO...ceceeecseessensecssessessesssessessesssessessesssessessssssessessssssessessssssessessssssessessssssessess 124

Introduction 124

Different functions 124
Asynchronous Digital 1/0 124
Special Input Functions 125
TEANSEET DA ...ttt 125
Programming EXAMPIEoiuiiiiiie ettt ettt ettt h ettt ettt ene s 125
Special Sampling Feature 125

Electrical SPECITICAIONS ... veieietie ettt ettt ettt e b e et e et e enaeeenes 125

OPHON STAr-HUD ...cccieeeiiiieiineeiineeiinteeiinnecitseessseesssneccsssecssseecssssessssenssssnsssssessssesssssscssee 120

Star-Hub introductioncccooiiiiniin. 126
Star-Hub trigger engine 126
Star-Hub clock engine 127

Software Interfaceccccceveveninnnn. 127
Star-Hub Initialization...................... 127
Setup of Synchronization and Clock 128
o FTe T = ST P USSP
Run the synchronized cards
ErTOr HONAIING ..ottt et e a bttt et b et e e n et eetee s
Excluding cards from trigger SyNChrOMIZAHONo.iiiiiiiiit ettt ettt 130
SH-Direct: using the Star-Hub clock directly without synchronization 131

System SHar-HUD ..o
Overview

Programming

Appendix 0000000000000 000 133
BITOr COdES ..o 133
Continuous buffer for increased data transfer rate 135

Backgroundoceiiiiiiii i 135
Setup on Windows systems.............. 135
Setup on Linux systems 135
Usage of the bufferccccoee. 136

Register overviewccccovvveeeeieeenn. 137
Card iNFOIMOHON FEGISIETSviuvieeieeiie ittt ettt ettt ettt ettt ettt e st e et e et e bt e bt esbeeat e bt e b e e beenseenteeste bt eseenseenseneeenes 137
Standard card setup ANd COMMANGSiiiiiiiiiii ettt ettt ettt ea et 138
Clock Settings

THIGGET SEHINGS ..o eeeeeiiit e ettt oottt e e e ettt e e e ettt e e e ettt e e e e
Registers for IMESIAMP OPHONiiuiiiiieitt ettt ettt ettt ettt e bt s et st e st e et e bt e e et enaeeneenneenees
Registers for BaseXIO option................
Registers for analog acquisition cards
Details on M2i cards clock and trigger 1/O section

Preface Introduction

Introduction

Preface

This manual provides detailed information on the hardware features of your Spectrum instrumentation board. This information includes tech-
nical data, specifications, block diagram and a connector description.

In addition, this guide takes you through the process of installing your board and also describes the installation of the delivered driver package
for each operating system.

Finally this manual provides you with the complete software information of the board and the related driver. The reader of this manual will
be able to integrate the board in any PC system with one of the supported bus and operating systems.

Please note that this manual provides no description for specific driver parts such as those for LabVIEW or MATLAB. These drivers are pro-
vided by special order.

For any new information on the board as well as new available options or memory upgrades please contact our website
http://www .spectrum-instrumentation.com. You will also find the current driver package with the latest bug fixes and new features on our site.

Please read this manual carefully before you install any hardware or software. Spectrum is not responsible
for any hardware failures resulting from incorrect usage.

Overview

m The PCl bus was first introduced in 1995. Nowadays it is the most common platform for PC based instrumentation boards. The very
WA vide range of installations world-wide, especially in the consumer market, makes it a platform of good value. Its successor is the

2. 2004 introduced PCl Express standard. In today’s standard PC there are usually two to three slots of both standards available for
Series instrumentation boards. Special industrial PCs offer up to a maximum of 20 slots. The common PCI/PCI-X bus with data rates of up
to 133 MHz x 64 bit = 1 GByte/s per bus, is more and more replaced by the PCI Express standard with up to 4 GByte/s data transfer rate
per slot. The Spectrum M2i boards are available in two versions, for PCI/PCI-X as well as for PCI Express. The 100% software compatible
standards allow to combine both standards in one system with the same driver and software commands.

st Within this document the name M2i is used as a synonym for both versions, either PCI/PCIX or PCI Express. Only passages that
differ concerning the bus version of the M2i.xxxx and M2i.xxxx-exp cards are mentioned separately. Also all card drawings will
show the PCI/PCIX version as example if no differences exist compared to the PCI Express version.

General Information

The 4 models of the M2i.20xx series are designed for the fast and high quality data acquisition. Every of the up to four input channels has
its own A/D converter and it's own programmable input amplifier.

This allows to record signals with 8 bit resolution without any phase delay between them. The inputs can be selected to one of seven input
ranges by software and could be programmed to compensate an input offset of £400% of the input range. The extremely large on-board
memory allows long time recording even with highest sample rates. A FIFO mode is also integrated on the board. This allows to record data
continuously and to process it in the PC or to store it to hard disk.

Several boards of the M2i.xxxx series may be connected together by the internal standard synchronisation bus to work with the same time
base.

Application examples: Laboratory equipment, Supersonics, LDA/PDA, Radar, Spectroscopy, production test.

8 M2i.20xx / M2i.20xx-exp Manual

Introduction Different models of the M2i.20xx series

Different models of the M2i.20xx series

The following overview shows the different available models of the M2i.20xx series. They differ in the number of mounted acquistion modules
and the number of available channels. You can also see the model dependant location of the output connectors.

¢ M2i.2020
e M2i.2030 Sync Bus
* M2i.2020-exp |
* M2i.2030-exp a0 — O -
Channel 1 == |0
Trigger —=— 0O |_
Clock — 0
B
;‘1..|')
¢ M2i.2021
e M2i.2031
« M2i.2021-exp
e M2i.2031-exp -]~ T
Channel 0 == |0
Channel 1 == |0
Trigger —=— |0
Clock — 0
Channel 2 == | C
Channel 3 —=— |0
:‘1..|')

(c) Spectrum GmbH 9

Additional options Introduction

Additional options

Star-Hub

The star hub piggy-back module al-
lows the synchronisation of up to 16
M2i cards. It is possible to synchro-
nize cards of the same type with

each other as well as different types. 'k — [

Starhub Connectors (0..4)

Starhub Connectors (5..15)

Two different versions of the star-hub (Option SH16 only)

module are available. A minor one
for synchronizing up to five boards L —
of the M2i series, without the need
for an additional system slot. The
maijor version (option SH16) allows
the synchronization of up to 16
cards with the need for an addition-]
al slot. A

The module acts as a star hub for

clock and trigger signals. Each

board is connected with a small co-

ble of the same length, even the master board. That minimizes the clock skew between the different cards. The figure shows the piggy-back
module mounted on the base board schematically without any cables to achieve a better visibility. It also shows the locations of the available
connectors for the two different versions of the star-hub option.

Any of the connected cards can be the clock master and the same or any other card can be the trigger master. All trigger modes that are
available on the master card are also available if the synchronization star-hub is used.

The cable connection of the boards is automatically recognized and checked by the driver when initializing the star-hub module. So no care
must be taken on how to cable the cards. The star-hub module itself is handled as an additional device just like any other card and the pro-
gramming consists of only a few additional commands.

BaseXIO (asynchronous digital 1/0)

The option BaseXIO is simple-to-use
enhancement to the cards of the M2i Sync Bus
series. It is possible to control a wide

range of (.extern0| instruments or BaseXIO 0
other equipment by using the eight BaseXIO 1
lines as asynchronous digital 1/0. BaseXIO 2
The BaseXIO option is useful if an BaseXIO 3
external amplifier should be control-
led, any kind of signal source must

BaseXIO 4

1

[
be programmed, if status informati- BaseXIO 5 k :I - 0
on from an external machine has to BaseXIO & o -__[;_J_T-_’_ internal connector (7..6)
be obtained or different test signals BaseXIO 7)
R T | 1[[[]].[—1 internal connector (5..0!
have to be routed to the board.] M]L-J”LUL -0

In addition to the I/O features, these L
lines are also for special functions.

Two of the lines can be used as ad-

ditional TTL trigger inputs for com-

plex gated conditions, one line can

be used as an reference time signal

(RefClock) for the timestamp option.

The BaseXIO MMCX connectors are mounted on-board. To gain easier access, these lines are connected to an extra bracket, that holds eight
SMB male connectors. For special purposes this option can also be ordered without the extra bracket and instead with internal cables.

The shown option is mounted exemplarily on a board with two modules and with the extra bracket. Of course you can also combine this
option as well with a board that is equipped with only one module.

L

10 M2i.20xx / M2i.20xx-exp Manual

Introduction The Spectrum type plate

The Spectrum type plate

M.

oiEE
serleso' :

|, M2i.3026 | SN 03123
em.: 1 GS

opt.: multi gate time sh5

TR V2 Prod, weok 08/067%
— Module V 6.1 Extension V 1.0 <&

5%

P

The Spectrum type plate, which consists of the following components, can be found on all of our boards. Please check whether the printed
information is the same as the information on your delivery note. All this information can also be read out by software:

® The board type, consisting of the two letters describing the bus (in this case M2i for the PCI-X bus) and the model number.

The size of the on-board installed memory in MSample or GSample. In this example there are 1 GS = 1024 MSample (2 GByte =
2048 MByte) installed.

The serial number of your Spectrum board. Every board has a unique serial number.

A list of the installed options. A complete list of all available options is shown in the order information. In this example the options
Multiple recording, Gated Sampling, Timestamp and Star-Hub 5 are installed.

The base card version, consisting of the hardware version (the part before the dot) and the firmware version (the part after the dot).

The version of the analog/digital front-end module. Consisting of the hardware version (the part before the dot) and the firmware
version (the part after the dot)

The date of production, consisting of the calendar week and the year.

O ©@ ®©® ® ®©® ®

The version of the extension module if one is installed. Consisting of the hardware version (the part before the dot) and the firmware
version (the part affer the dot). In our example we have the Star-Hub 5 extension module installed. Therefore the version of the ex-
tension module is filled on the type plate. If no extension module is installed this part is left open.

Please always supply us with the above information, especially the serial number in case of support request. That
allows us to answer your questions as soon as possible. Thank you.

(c) Spectrum GmbH 11

Introduction

Hardware information

Block diagram

Hardware information

sng =T L e W
32012

mle) N
07T F017 H

Z\ _
S[geUy Imdmg Joo0TaT g _.on
~ ° 49bb14]

75001
0/1 =N H

[[7 “wondo oixeses 0 __ o — o B
Hoe ==

_ / gi@ © |
e11bp mois dl@
a1npo cowcmn.u._Wamv } V4 | .owm._. NH wxw 7y) <ca? & m _
1NPON LOTSUSIX3 H /8 bl T 1x3 qon IS ==
| mientententendendendand | _ joy dweisawr) / @\QI@ m _
| | 7y %@ a
| | - - == n__ |
| | r--r———"F"F+™~—""~""™>™>""™""™>""™>""™>"™""™>"""™>""™"™>""™""™""™""™"™—""™"™"7— 7
“ soo “ _ ’ _
) _ I
E el | ~ g |
- w R ,m - _ 1 195340 uteg |/v|r® _
13 iS5 8 v ew
| M mw 0 | . ZHW 002 |
Iy Il _ _
3 N
I 3 o uteg + 13540 /_\ g _
i r 0 ST aaxardniny a -~ - Y 2
“ E ‘ _ 426b614) P Y ' ‘ A v FASte) _

|
L-
/1
N\
-
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
(I

32019 _| |||||||||||||||||| T T |_
436614 _] » m _
10.0U0] W3l

1044u0] p4eog _ ; \][_n_< o o - ¢ @ _
8 Y Tud

_ _

_

_

_

ZHW BBz
_ uteg + 19s40 _ m
faoway o1 " aexardniny a)/]
; 13510 ure ¢ £ “o' 2un

_ 426b14]
JENpEp—— | _I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I—

| g |

M2i.20xx / M2i.20xx-exp Manual

12

Introduction

Hardware information

Technical Data

Analog Inputs

Resolution

Differential non linearity (DNL)

Integral non linearity (INL)

Offset error

Gain error

Programmable input offset

Crosstalk 1 MHz signal, 50 Ohm term
Input signal with 50 Ohm termination
Analog Input impedance

Over voltage protection (range < 0.5 V)
Over voltage protection (range > +0.5 V)
Connector (analog and trigger/clock)

Trigger

Multi, Gate: re-arming time

Max Pretrigger at Multi, Gate, FIFO
Trigger accuracy (<100 MS/s)
Trigger accuracy (>100 MS/s)
Channel trigger resolution

Trigger output delay

External trigger type

External trigger input

External trigger maximum voltage

External trigger output levels
External trigger output drive strength

8 bit

<0.5 LSB (ADC)

< 0.5 LSB (ADC)

can be calibrated by user

< 2% of current value

+400% of current input range
< -62 dB between any adjacent channels
max 5 V rms

50 Ohm / 1 MOhm || 25 pF
+5V

+50V

3 mm SMB male

<4 Samples

16352 Samples as sum of all active channels
1 Sample (internal or external trigger mode)
2 Samples (internal or external trigger mode)
8 bit

One positive edge after internal trigger event
3.3V LVTTL compatible (5V tolerant)

Low < 0.8 V, High > 2.0 V, > 2 clock periods
0.5V up to +5.7 V (internally clamped to
5.0V, 100 mA max. clamping current)

Low 0.4V, High > 2.4 V, TTL compatible
Capable of driving 50 ohm load

Software programmable parameters

Input Ranges

Input impedance
Input Offset
Clock mode

Clock impedance
Trigger impedance
Trigger mode

Trigger level

Trigger edge
Trigger pulse width
Trigger delay
Memory depth

Postirigger
Multiple Recording segment size

Multi / Gated pretrigger
ABA clock divider

Synchronization clock divider
Channel selection

+50 mV, £100 mV, £200 mV, +500 mV,
+1V, 22V, 5V

50 Ohm / 1 MOhm

+400% of input range in steps of 1%

Int. PLL, int. quartz, ext. clock, ext. divided,
ext. reference clock, sync

50 Ohm / high impedance (> 4kOhm)

50 Ohm / high impedance (> 4kOhm)
Channel, Extern, SW, Auto, Window, Pulse,
Re-Arm, Or/And, Delay

8 bit resolution: 1/256 to 255/256 of input
range

Rising edge, falling edge or both edges

0 to [64k - 1] samples in steps of 1 sample
0 to [64k - 1] samples in steps of 1 sample
8 up to [installed memory / number of active
channels] in steps of 8

4 up to [8G - 4] samples in steps of 4

8 up toinstalled memory / 2 / active chan-
nels] in steps of 4

0 up to [16k samples / number of active
channels - 32]

1 up to [64k - 1] in steps of 1

2 up to [8k - 2] in steps of 2

Any 1, 2 or 4 channels (see manual for clock
limits on the selections)

Clock

Internal clock range (PLL mode)

Internal clock accuracy

Internal clock: max. jitter in PLL mode
Internal clock: max. jitter in quartz mode
Internal clock setup granularity

Internal clock setup granularity example
Reference clock: external clock range
External clock range

External clock delay to internal clock
External clock type

External clock input

External clock maximum voltage

External clock output levels
External clock output drive strength

Environmental and Physical details
Dimension (PCB only)

Width (Standard or star-hub 5)

Width (star-hub 16)

Weight (depending on options/channels)
Warm up time

Operating temperature

Storage temperature

Humidity

PCI / PCI-X specific details
PCl / PCI-X bus slot type
PCl / PCI-X bus slot compatibility

PCI EXPRESS specific details

PCle slot type

PCle slot compatibility

*Some x16 PCle slots are for graphic cards

1 kS/s to max (see table below)

20 ppm

TBD

TBD

<1% of range (100M, TOM, 1M, 100k,...)
range 1M to 10M: stepsize < 100k

> 1.0 MHz and < 125.0 MHz

1 MS/s to max (see table below)

5.4 ns

3.3V LVTTL compatible

Low <0.8 V, High > 2.0 V, duty 45% - 55%
0.5V up to +3.8 V (internally clamped to
3.3V, 100 mA max. clamping current)
Low < 0.4V, High > 2.4 V, TTL compatible
Capable of driving 50 ohm load

312 mm x 107 mm (full PCI length)
1 full size slot

2 full size slots

290g (2 ch) up to 420g (4 ch + sh)
10 minutes

0°C-50°C

-10°C-70°C

10% to 90%

32 bit 33/66 MHz
32/64 bit, 33-133 MHz, 3,3 V.and 5 V I/O

x1
x1/x4/x8/x16*

only and can not be used for other cards.

Power consumption (max speed) PCI / PCI-X PCI EXPRESS
‘3,3v sv‘ 33V |2v|
M2i.20x0 (256 MS memory) 22A 05A 0,4 A 1,0
M2i.20x1 (256 MS memory) 28A 08A 0,4 A 1,2
M2i.2031 (4 GS memory), max power 39A 08A 0,4 A 2,0
Max channels / Star-Hub Option SH5 SH16 SSHS5 SSHS16
M?2i.2020/2030 10 32 170 542
M2i.2021/2031 20 64 340 1084

BaseXIO (Option)

BaseXIO Connector (extra bracket)
BaseXIO input

BaseXIO input maximum voltage
BaseXIO output levels

BaseXIO output drive strength

8 x SMB (8 x MMCX internal)

TTL compatible: Low <0.8 V, High>2.0 V
0.5Vupto+5.5V

TTL compatible: Low <0.4 V, High>2.4 V
32 mA maximum current

Certifications, Compliances, Warranty

EMC Immunity

EMC Emission

Product warranty

Software and firmware updates

Compliant with CE Mark

Compliant with CE Mark

2 years starting with the day of delivery
Life-time, free of charge

(c) Spectrum GmbH

Hardware information

Introduction

Dynamic Parameters

M2i.2020 M2i.2021 M2i.2030 M2i.2031
max infernal clock 50 MS/s 50 MS/s 200 MS/s 200 MS/s
max external clock 50 MS/s 50 MS/s 100 MS/s 100 MS/s
-3 dB bandwidth £50 mV DC to 25 MHz DC to 25 MHz DC to 60 MHz DC to 60 MHz
-3 dB bandwidth > +100 mV DC to 25 MHz DC to 25 MHz DC to 90 MHz DC to 90 MHz
Zero noise level (< +100 mV) <0,6 LSB <0,9 LSB <1,51SB <2.0LSB
Zero noise level (> +100 mV) < 0,6 LSB <0,7 LSB < 1.3 LSB < 1.5LSB
Test - sampling rate 50 MS/s 50 MS/s 100 MS/s 100 MS/s
Test signal frequency 1 MHz | 4 MHz 1MHz | 4 MHz 1MHz | 9 MHz 1MHz | 9 MHz
SNR (typ) 47.5dB | 47.5dB|| 46.8dB| 46.5dB|| 45.3dB| 45.0dB|| 45.0dB | 44.5dB
THD (typ) 56.0dB | -55.5dB|| -56.0dB | -55.5dB|| -51.5dB| -49.5dB|| -49.5dB | -49.5dB
SFDR (typ), excl. harm. 61.3dB| 61.0dB|| 60.3dB| 60.1dB|| 59.0dB| 57.0dB|| 59.0dB| 57.0dB
ENOB (based on SNR) 7.6 bit 7.6 bit 7.5 bit 7.4 bit 7.2 bit 7.2 bit 7.2 bit 7.2 bit
ENOB (based on SINAD) 7.5 bit 7.5 bit 7.4 bit 7.3 bit 7.1 bit 7.0 bit 7.1 bit 7.0 bit

Dynamic parameters are measured at = 1 V input range (if no other range is stated) and 50 Ohm termination with the samplerate specified in the table. Measured parameters are aver-
aged 20 times to get typical values. Test signal is a pure sine wave of the specified frequency with > 99% amplitude. SNR and RMS noise parameters may differ depending on the quality
of the used PC. SNR = Signal to Noise Ratio, THD = Total Harmonic Distortion, SFDR = Spurious Free Dynamic Range, SINAD = Signal Noise and Distortion, ENOB = Effective Number

of Bits. For a detailed description please see application note 002.

Order Information

PCI/PCI-X

PCI Express

Options

Cables

Drivers

Order no. Standard mem 1 channel 2 channels 4 channels
M2i.2020 256 MByte 50 MS/s 50 MS/s

M2i.2021 256 MByte 50 MS/s 50 MS/s 50 MS/s
M2i.2030 256 MByte 200 MS/s 100 MS/s

M2i.2031 256 MByte 200 MS/s 200 MS/s 100 MS/s
Order no. Standard mem 1 channel 2 channels 4 channels
M2i.2020-exp 256 MByte 50 MS/s 50 MS/s

M2i.2021-exp 256 MByte 50 MS/s 50 MS/s 50 MS/s
M?2i.2030-exp 256 MByte 200 MS/s 100 MS/s

M2i.203 1-exp 256 MByte 200 MS/s 200 MS/s 100 MS/s
Order no. Option

M2i.xxxx-512MB Memory upgrade to 512 MB of total memory

M2i.xxxx-1GB Memory upgrade to 1 GB of total memory

M2i.xxxx-2GB Memory upgrade to 2 GB of total memory

M2i.xxxx-4GB Memory upgrade to 4 GB of total memory

Order no. Option

M2i.xxxx-mr Option Multiple Recording

M2i.xxxx-mgt Option pack including Multiple Recording, Gated Sampling, Timestamp
M2i.xxxx-mgtab Option pack including Multiple Recording, Gated Sampling, Timestamp, ABA mode
M2i.xx0xx-SH5 (1) Synchronization Star-Hub for up to 5 cards, only 1 slot width

M2i.xxxx-SH16 (1)
M2i.xxxx-SSHM (1)
M2i.xxxx-SSHS5 (1)
M2i.xxxx-SSHS16 (1)

Synchronization Star-Hub for up to 16 cards

System-Star-Hub Master for up to 15 cards in the system and up to 17 systems, sync cables included
System-Star-Hub Slave for up to 5 cards in one system, all sync cables included

System-Star-Hub Slave for up to 16 cards in one system, all sync cables included

M2i.xxxx-bxio Option BaseXIO: 8 digital 1/O lines usable as asynchronous /O, timestamp ref-clock and additional
external trigger lines, additional bracket with 8 SMB connectors

M2i-upgrade Upgrade for M2i.xxxx: later installation of option -dig or -bxio

Order no. Option

Cab-3f-9m-80 Adapter cable SMB female to BNC male, 80 cm

Cab-3f-9f.80 Adapter cable SMB female to BNC female, 80 cm

Cab-3f-3f-80 Adapter cable SMB female to SMB female, 80 cm

Cab-3f-9m-200 Adapter cable SMB female to BNC male, 200 cm

Cab-3f-9f200 Adapter cable SMB female to BNC female, 200 cm

Cab-3f-3f200 Adapter cable SMB female to SMB female, 200 cm

Cab-3f-915 Adapter cable SMB female to BNC female, 5 cm (short cable especially for oscilloscope probes)

Order no. Option

M2i.xxxx-ml MATLAB driver for all M2i cards

M2i.20xxlv LabVIEW driver for all M2i.20xx cards

M2i.20xx-dl DASYLab driver for all M2i.20xx cards

M2i.20xx-vee Agilent VEE driver for all M2i.20xx cards

(1) : Just one of the options can be installed on a card at a time.

M2i.20xx / M2i.20xx-exp Manual

Hardware Installation System Requirements

Hardware Installation

System Requirements

All Spectrum M2i.xxxx instrumentation cards are compliant to the PCl standard and require in general one free full length slot. This can either
be a standard 32 bit PCl legacy slot, a 32 bit or a 64 bit PCI-X slot. Depending on the installed options additional free slots can be necessary.

All Spectrum M2i.xxxx-exp instrumentation cards are compliant to the PCl Express 1.0 standard and require in general one free full length

PCI Express slot. This can either be a x1, x4, x8 or x16 slot. Some x16 PCle slots are for the use of graphic cards only and can not be used
for other cards. Depending on the installed options additional free slots can be necessary.

Warnings

ESD Precautions

The boards of the M2i.xxxx series contain electronic components that can be damaged by electrostatic discharge (ESD).

Before installing the board in your system or even before touching it, it is absolutely necessary to bleed of
any electrostatic electricity. A

Cooling Precautions

The boards of the M2i.xxxx series operate with components having very high power consumption at high speeds. For this reason it is abso-
lutely required to cool this board sufficiently. It is strongly recommended to install an additional cooling fan producing a stream of air across
the boards surface. In most cases professional PC-systems are already equipped with sufficient cooling power. In that case please make sure
that the air stream is not blocked.

Sources of noise

The boards of the M2i.xxxx series should be placed far away from any noise producing source (like e.g. the power supply). It should espe-
cially be avoided to place the board in the slot directly adjacent to another fast board (like the graphics controller).

(c) Spectrum GmbH 15

Installing the board in the system Hardware Installation

Installing the board in the system

Installing a single board without any options

Before installing the board you first need to unscrew and remove the dedicated blind-bracket usually mounted to cover unused slots of your
PC. Please keep the screw in reach to fasten your Spectrum card afterwards. All Spectrum cards require a full length PCI, PCI-X slot (either
32Bit or 64Bit) or PCl Express slot [either x1, x4, x8 or x16) with a track at the backside to guide the board by it's retainer. Now insert the
board slowly into your computer. This is done best with one hand each at both fronts of the board.

A While inserting the board take care not to tilt the retainer in the track.

Please be very carefully when inserting the board in the slot, as most of the mainboards are mounted with
A spacers and therefore might be damaged if they are exposed to high pressure.

After the board’s insertion fasten the screw of the bracket carefully, without overdoing.

Installing the M2i.xxxx PCI/PCI-X card in a 32 bit PCI/PCI-X slot

<«€— Retainer

-

<—— PCl or PCI-X 32Bit Slot

k1IN

Installing the M2i.xxxx PCI/PCI-X card in a 64 bit PCI/PCI-X slot

<«€— Retainer

-

k1IN

16 M2i.20xx / M2i.20xx-exp Manual

Hardware Installation

Installing the board in the system

Installing the M2i.xxxx-exp PCl Express card in a PCle x1 slot

<«€——— Retainer

- -
- .
“IIII‘

=

-4l

<«—— PCl Express x1 Slot

Installing the M2i.xxxx-exp PCl Express card in a PCle x4, x8 or x16 slot

<«€——— Retainer

- -
- .
“IIII‘

/

—
<«——— PCl Express x4, x8, x16 Slot

-4l

(c) Spectrum GmbH

Installing the board in the system Hardware Installation

Installing a board with digital inputs/outputs

Before installing the board you first need to unscrew and remove the dedicated blind-brackets usually mounted to cover unused slots of your
PC. Please keep the screws in reach to fasten your Spectrum board and the extra bracket afterwards. All Spectrum boards require a full length
PCl slot with a track at the backside to guide the board by it's retainer. Now insert the board and the extra bracket slowly into your computer.
This is done best with one hand each at both fronts of the board.

A While inserting the board take care not to tilt the retainer in the track.

Please be very carefully when inserting the board in the PCl slot, as most of the mainboards are mounted
with spacers and therefore might be damaged they are exposed to high pressure.

After the board’s insertion fasten the screws of both brackets carefully, without overdoing. The figure shows an ex-
ample of a board with two installed modules.

" P

.

<«€— Retainer

<€— PCl or PCI-X Slot

-4l .-T,F

Installing a board with option BaseXIO

Before installing the board you first need to unscrew and remove the dedicated blind-brackets usually mounted to cover unused slots of your
PC. Please keep the screws in reach to fasten your Spectrum board and the extra bracket afterwards. All Spectrum boards require a full length
PCl slot with a track at the backside to guide the board by it's retainer. Now insert the board and the extra bracket slowly into your computer.
This is done best with one hand each at both fronts of the board.

A While inserting the board take care not to tilt the retainer in the track.

Please be very carefully when inserting the board in the PCl slot, as most of the mainboards are mounted
with spacers and therefore might be damaged they are exposed to high pressure.

After the board’s insertion fasten the screws of both brackets carefully, without overdoing. The figure shows an ex-
ample of a board with two installed modules.

r;—_
]

~€———PCl or PCI-X Slot A e

18 M2i.20xx / M2i.20xx-exp Manual

Hardware Installation Installing the board in the system

Installing multiple boards synchronized by star-hub

Hooking up the boards

Before mounting several synchronized boards for a multi channel system into the PC you can hook up the cards with their synchronization

cables first. If there is enough space in your computer’s case (e.g. a big tower case) you can also mount the boards first and hook them up
afterwards. Spectrum ships the cards together with the needed amount of synchronization cables. All of them are matched to the same length,
to achieve a zero clock delay between the cards.

Only use the included flat ribbon cables.

All of the cards, including the one that carries the star-hub piggy-back module, must be wired to the star-hub as the figure is showing as an
example for three synchronized boards.

It does not matter which of the available connectors on the star-hub module you use for which board. The software driver will detect the types
and order of the synchronized boards automatically. The figure shows the three cables mounted on the major SH16 star-hub to achieve a
better visibility. When you use the minor SH5 version, only the connectors on the upper side of the star-hub piggy-back module are available
(see figure for details on the star-hub connector locations).

As some of the synchronization cables are not secured against wrong plugging you should take Syne eable
care to have the pin 1 markers on the multiple connectors and the cable on the same side, as the

figure on the right is showing.
Pin 1
mul:lkers

Sync connector
on board

Mounting the wired boards

Before installing the cards you first need to unscrew and remove the dedicated blind-brackets usually mounted to cover unused slots of your
PC. Please keep the screws in reach to fasten your Spectrum cards afterwards. All Spectrum boards require a full length PCl slot with a track
at the backside to guide the card by it's retainer. Now insert the cards slowly into your computer. This is done best with one hand each at
both fronts of the board. Please keep in mind that the board carrying the star-hub piggy-back module might require the width of two slots,
when the major SH16 version is used.

While inserting the cards take care not to tilt the retainers in the tracks. A

Please be very carefully when inserting the cards in the slots, as most of the mainboards are mounted with
spacers and therefore might be damaged if they are exposed to high pressure. A

After inserting all cards fasten the screws of all brackets carefully, without overdoing. The figure shows an example of three cards with two
installed modules each.

Starhub Connectors (0..4) -

f

]

i

|
C

Starhub Connectors (5..15)
(Option SH16 only)

<€——— Retainer

<€——PCl or PCI-X Slots

(c) Spectrum GmbH 19

Interrupt Sharing Software Driver Installation

Software Driver Installation

Before using the board a driver must be installed that matches the operating system. The installation is done in different ways depending on
the used operating system. The driver that is on CD supports all cards of the M2i series. That means that you can use the same driver for all
cards of this family.

Interrupt Sharing

This board uses a PCl interrupt for DMA data transfer and for controlling the FIFO mode. The used interrupt line is allocated by the PC BIOS
at system start and is normally depending on the selected slot. Because there is only a limited number of interrupt lines available on the PCI
bus it can happen that two or more boards must use the same interrupt line. This so called interrupt sharing must be supported by all drivers
of the participating equipment.

Most available drivers and also the Spectrum driver for your board can manage interrupt sharing. But there are also some drivers on the
market that can only use one interrupt exclusively. If this equipment shares an interrupt with the Spectrum board, the system will hang up if
the second driver is loaded (the time is depending on the operating system).

If this happens it is necessary to reconfigure the system in that way that the critical equipment has an exclusive access to an interrupt.

On most systems the BIOS shows a list of all installed PCI boards with their allocated interrupt lines directly after system start. You have to
check whether an interrupt line is shared between two boards. Some BIOS allow the manual allocation of interrupt lines. Have a look in your
mainboard manual for further information on this topic.

Because normally the interrupt line is fixed for one PCl slot it is simply necessary to use another slot for the critical board to force a new
interrupt allocation. You have to search a configuration where all critical boards have only exclusive access to one interrupt.

Depending on the system, using the Spectrum board with a shared interrupt may degrade performance a little. Each interrupt needs to be
checked by two drivers. For this reason when using time critical FIFO mode even the Spectrum board should have an exclusively access to
one interrupt line.

20 M2i.20xx / M2i.20xx-exp Manual

Software Driver Installation

Windows 2000

Windows 2000

Installation

Found New Hardware Wizard

‘Welcome to the Found New
Hardware Wizard

This wizard helps you install a devics diiver for
hardware device.

To continue, click Mext

<Back Concel |

Found New Hardware Wizard

Locate Driver Files
‘where do you want Windows to search for driver files?

Search for driver files for the following hardware device:

Mzi. 2021

The wizard searches for suitable drivers in its driver database on your computer and in
any of the follawing optional search lovations that yau specify

To start the search, click New, I you are searching on a floppy disk or CO-ROM diive,
insert the fappy disk or D befare clicking Mest
Oplional search locations:

I | Flsppydisk dives:

I~ LOFOM dives

' Specify alocation

™ Micrasoft windows Update

< Back I Mext > I

Concel |

Found New Hardware Wizard

Driver Files Search Results
The wizard has finished searching for driver files for pour hardware device,

The wizard found a driver for the following device:

Mzi. 2021

“wfindows found a drives for this device. To install the driver Windows found, click Mest

= ¢ “wwirrithinfhoem.inf

<Back Cancel

Version control

8 [=] S
| Action | View H -

=)

B Computer

3 Disk diives

Display adapters

5 DVD/CD-ROM diives

2 Floppy disk controllers

2 IDE ATA/ATAP! contrallers
8 Keyboards

Mice and other painting devices
Monitors

B Network adapters

¥ Ports [COM & LPT)

¢ Sound, video and game contrallers
-8 Spectum Drivers

When installing the board in
a Windows 2000 system the
Spectrum board will be rec-
ognized automatically on the
next start-up.

The system offers the direct in-
stallation of a driver for the

board.

Let Windows search automat-
ically for the best driver for
your system.

Select the CD that was deliv-
ered with the board as instal-
lation source. The driver files
are located on CD in the di-
rectory
\spcm_driver\win32.

The hardware assistant
shows you the exact board
type that has been found like
the M2i.2021 in the exam-

ple.

The drivers can be used di-
rectly after installation. It is
not necessary fo restart the
system. The installed drivers
are linked in the device man-
ager.

Below you'll see how to ex-
amine the driver version and
how to update the driver with
a newer version.

If you want to check which driver version
is installed in the system this can be eas-
ily done in the device manager. There-
fore please start the device manager
from the control panel and show the
properties of the installed driver.
On the property page Windows 2000
shows the date and the version of the in-
stalled driver.

Found New Hardware Wizard

Install Hardware Device Drivers
A devics diiver is & software program that ensbles & hardware device to work with
an operating spstem

This wizard will complate the installation for this device:

Mzi. 2021

A device diiver is & softwars program that makes hardwars devics work. Windows
needs diiver files far your new device. To locate diver fles and complete the
installation click Next

‘what do you want the wizard to do?

& Baarch for a suitabls diiver for my devios [recommendedt

€ Display a list of the known drivers for this devics 5o that | can chaoss a speific

< Back I Mext > I Cancel

Upgrade Device Driver Wizard K

Cancel

et the manufacturer's installation disk into the drive
== selected and then click OK.

LCopy manufacturer's files from:

| Di\spem_driver|\winaz

I

Found New Hardware Wizard

Completing the Found New
Hardware Wizard

Mzi.2021

Windows has finished instaling the software for this device.

To elose this wizard, click Finish

e G

M2i.2021 Properties

General Diver | Resources |

Mzi. 2021

Diiver Provider. Spectum GmbH
Diiver Date: Not available
Driver Version: 1.01.880.0

Digital Signer. Mot diaitally signed

To view details about the: driver files Inaded for this device, click Driver
Details. To uninstal the driver files for this device, click Uninstall. To update
the driver files for this device, click Update Driver.

HE Mzi.2021

System devices
Universal Serial Bus controllers

After clicking the driver details button the
detailed version information of the driver
is shown. This information is also avail-
able through the control center.

" Biriver Delais, I Unirestall | Update Driver. |

0K Cancel

(c) Spectrum GmbH

21

Windows 2000

Software Driver Installation

Driver - Update

If a new driver version should be installed no Spectrum board is allowed to be in use by any software. So please stop and exit all software

that could access the boards.

Upgiade Device Driver Wizard

‘Welcome to the Upgrade Device
Driver Wizard

This wizard helps you upgrade a device diver for a
hardviare device:

To continue, click Next

< Bacl I Figui s I

Cancel |

Upgiade Device Driver Wizard

Locate Driver Files
“Where do you want Windows to search for diver files?

Search for diiver files for the following hardware device:

Mzi. 2021

The wizard searches far suitable drivers in its diiver database on your computer and in
any of the following optional search locations that you specify

To start the ssarch, click Next. If you ars searching on a floppy disk or CD-ROM diivs,
insert the floppy disk or CO before clicking Nest.
Dptional search locations:

I oy diste diivzs

I~ COAH dives

¥ Specify alocation

™ Microsaft Windows Update

< Back I Mext > I

Cancel |

Upgiade Device Driver Wizard

Driver Files Search Results
The wizard has finished searching for diiver files for pour hardware device.

The wizard found a driver for the following device:

“windows found a diiver that is a closer match for this device than your curent diver,
T install the driver Wwindows found, click Nest

dtispem_diveriwin32iSpchzDrv3z. inf
== Ispem_drivery 15

< Back I Figui s I Cancel

A new driver version is direct-
ly installed from the device
manager. Therefore please
open the properties page of
the driver as shown in the sec-
tion before. As next step click
on the update driver button
and follow the steps of the
driver installation in a similar
way to the previous board
and driver installation.

Please select the path where
the new driver version was
unzipped to. If you've got the
new driver version on CD
please select the
\spcm_driver\win32 path on
the CD containing the new
driver version.

The new driver version can
be used directly after installa-
tion without restarting the sys-
tem. Please keep in mind to
update the driver of all in-
stalled Spectrum boards.

Upgrade Device Driver Wizard

Install Hardware Device Drivers
A device driver is a software program that enables a hardware device to work with
an operating system

This wizard upgrades drivers for the fallowing hardware device:

Mzi.z021

Upgrading to @ newer version of a device diiver may add functiondlity to or improve the
performance of this devic

“What do you want the wizard to do?
o

" Display a list of the known drivers for this device so that | can choose a specific

< Back I Next > I Cancel

Upgrade Device Driver Wizard =]

Cancel

Inisert the manufacturer's installation disk into the drive
selected, and then click OK.

Copy manufactursr's fles fiom

| D\spem_driver|\win3z

=] Bowse..

Upgrade Device r Wizard

Completing the Upgrade Device
Driver Wizard

22021

‘windows has finished installing the software for this device.

To close this wizard, click Finish

e G

22 M2i.20xx / M2i.20xx-exp Manual

Software Driver Installation

Windows XP 32/64 Bit

Windows XP 32/64 Bi

Installation

When installing the board in a Windows XP system the Spectrum board will be rec-
ognized automatically on the next start-up.

The system offers the direct installation of a driver for the board.

Do not let Windows automatically search for the best driver, be-
cause sometimes the driver will not be found on the CD. Please take
the option of choosing a manual installation path instead.

Allow Windows XP to search for the most suitable driver in a specific directory. Se-
lect the CD that was delivered with the board as installation source. The driver files
are located on CD in the directory \spcm_drv\win32 for Windows XP 32 Bit or
\spcm_drv\winé4 for Windows XP 64 Bit.

Fnund New Hardware Wizard =]

‘Welcome to the Found New
Hardware Wizard
This wizard helps you install software for

DPID Module

(*)_If your hardware came with an installation CD
2 or Hoppy disk. insert it now.

‘what do you want the wizard to do?

" Instal the software automaticaly (Recommended)

@ finstal from = s or Speciis losalion [advanceds

Click Mewt to continue

< Back I Mext > I

Concel |

Found New Hardware Wizard

Please choose your search and installation options.

(Cl

Use the check boxes below to limit or expand the default search, which includes local
paths and remavable media. The best diver found wil be installed.

™ Search removable media (floppy, CO-AOM]

IV Include this location in the search:

|D \spom_driver\wind2

=1 Bowse

€ Dan't search. | wil choose the diiver ta install

Chaose this oplion to select the deviee diiver fiom a list, Windows daes not guarantee that
the dhiver you choas will b the best match for your hardware.

<Back [News> | Coancel |
The hardware assistant shows you the exact board type that has been found like a
the M2i.2021 in the example. Completing the Found New
Hardware Wizard
. The d has finished ling the sof fi
The drivers can be used directly after installation. It is not necessary to restart the o v ished nsling the ofiner o
. M2i.2021
system. The installed drivers are linked in the device manager. N
Below you'll see how to examine the driver version and how to update the driver
with a newer version.
Click Finish to close the wizard
< Bark | Firiigh I Cancel
.
Version control
If you want to check which driver version is installed in the system this e 5'—'2'51
3 . N View Help
can be easily done in the device manager. Therefore please start the |‘_ NI |
device manager from the control panel and show the properties of
the installed driver. 9 Computer
e Disk drives
Display adapters
2 DVDJCD-ROM drives
2 Flogpy disk controllers
1 Floppy disk drives
@ IDE ATA/ATAPI controllers
“» keyboards
Mice and other pointing devices
& Monitars
B3 Metwork adapters
2 Ports (COM & LPT)
Processors
@, sound, video and game controllers
)~ Spectrum M2i cards
< Mzi.zoz1
System devices
Universal Serial Bus controllers
(c) Spectrum GmbH 23

Windows XP 32/64 Bit Software Driver Installation

On the property page Windows XP shows the date and the version of the installed driver. e

General Diver | Resources |

After clicking the driver details button the detailed version information of the driver is shown. W

This information is also available through the Spectrum Control Center.
Driver Provider: Spectoum GmbH

Driver Date: 4772008
Diiver Version. 1.20.812.0
Digital Signer. Mot digialy signed

To view details about the diiver files.

Update Dilver... T upitats the diiver for this devics
If the:device falls after updating the diiver. roll
Roll Back Driver back ta the previously installed driver.
Uristsl Ta uninstall the diver [Advanced)
K Cancel

Driver - Update

If a new driver version should be installed no Spectrum board is allowed to be in Hardware Updcte Wizard =

use by any software. So please stop and exit all software that could access the

boards.

‘Welcome to the Hardware Update
Wizard

This wizard helps you install software for.

. Mz2i2021
A new driver version is directly installed from the device manager. Therefore please ‘

open the properties page of the driver as shown in the section before. As next step
click on the update driver button and follow the steps of the driver installation in a
similar way to the previous board and driver installation.

() 1f your hardwate came with an installation CD
3£ or floppy disk. insert it now.

“w/hat do pou want the wizard to do?

€ Install the software automatically [Aecommended)

@ nstall fram 2 list or specific location [Edvanced?

Click Mext to continue.

Bk [Mews | Cancd |

Hardware Update Wizard

Please choose your search and installation options.

Please select the path where the new driver version was unzipped to. If you've got
the new driver version on CD please select the \spcm_drvAwin32 path on the CD
containing the new driver version.

% Search for the best diiver in these Iocations

Use the check bores below to limit or expand the: default search, which includes local
paths and removable media. The best diver found will be installed.

™ Search removable media (floppy, CO-ROM...]

¥ Include: this location in the search:
[D:spem_diivertwin32 =l Browse

" Don't search. | will chooss the diiver ta install

Chonse this aption to select the device driver fiom a list Windows does not quarantes that
the driver you choose will be the best match for pour hardware.

<Back [News | Cancd |

s

Completing the Hardware Update
Wizard

The new driver version can be used directly after installation without restarting the
system. Please keep in mind to update the driver of all installed Spectrum boards.

The wizard has finished instaling the software for

_\> M2i.2021

Click, Finish ta close the wizard,

<Back [ERRRTY | Corcel

24 M2i.20xx / M2i.20xx-exp Manual

Software Driver Installation Linux

Linux

Overview

The Spectrum M2i cards are delivered with Linux drivers suitable for Linux installations based on kernel 2.4 and kernel 2.6, single processor
(non-SMP) and SMP systems, 32 bit and 64 bit systems. As each Linux distribution contains different kernel versions and different system setup
it is nearly every case necessary to have a directly matching kernel driver to run it on a specific system.

Spectrum delivers pre-compiled kernel driver modules for a number of common distributions with the cards. You may try to use one of these
kernel modules for different distributions which have a similar kernel version. Unfortunately this won't work in most cases as most Linux system
refuse to load a driver which is not exactly matching. In this case it is possible to get the kernel driver sources from Spectrum. Please contact
your local sales representative to get more details on this procedure.

The Standard delivery contains the following pre-compiled kernel driver modules. This list may have been enhanced in between since printing
of the manual. If your specific Linux distribution is not in this list please download the latest drivers from our website.

Distribution Kernel Version Processor Width Distribution Kernel Version Processor Width
Suse 9.0 2.4.21 single only 32 bit Redhat 9.0 2.4.20 single and smp 32 bit
Suse 9.1 2.6.4 single and smp 32 bit Fedora Core 3 2.6.9 single and smp 32 bit
Suse 9.3 2.6.11 single and smp 32 bit Fedora Core 4 2.6.11 single and smp 32 bit
Suse 10.0 2.6.13 single only 32 bit and 64 bit Fedora Core 5 2.6.15 single and smp 32 bit and 64 bit
Suse 10.1 2.6.16 single only 32 bit and 64 bit Fedora Core 6 2.6.18 single and smp 32 bit and 64 bit
Suse 10.2 2.6.18 single and smp 32 bit and 64 bit Fedora Core 7 2.6.21 single and smp 32 bit and 64 bit
Suse 10.3 2.6.22 single and smp 32 bit and 64 bit Fedora Core 8 2.6.23 single and smp 32 bit and 64 bit
Suse 11.0 2.6.25 single and smp 32 bit and 64 bit Fedora Core 9 2.6.25 single and smp 32 bit and 64 bit
Debian Sarge 2.4.27 single 32 bit Debian Sarge 2.6.8 single 32 bit

Debian Etch 2.6.18 single and smp 32 bit and 64 bit

The Linux drivers have been tested with all above mentioned distributions by Spectrum. Every of these distributions has been installed with
the default setup using no kernel updates. Much more different distributions are used by customers with self compiled kernel driver modules.

Standard Driver Installation

The driver is delivered as installable kernel modules together with libraries to access the kernel driver. The installation script will help you with
the installation of the kernel module and the library.

Login as root
It is necessary to have the root rights for installing a driver.

Call the install.sh <install path> script
This script will install the kernel module and some helper scripts to a given directory. If you do not specify a directory it will use your home
directory as destination. It is possible to move the installed driver files later to any other directory.

The script will give you a list of matching kernel modules. Therefore it checks for the system width (32 bit or 64 bit) and the processor (single
or smp). The script will only show matching kernel modules. Select the kernel module matching your system. The script will then do the follow-
ing steps:

e copy the selected kernel module to the install directory (spem.o or spem.ko)
¢ copy the helper scripts to the install directory (spcm_start.sh and spc_end.sh)
¢ copy and rename the matching library to /usr/lib (/usr/lib/libspecm_linux.so)

Udev support
Starting with driver version 1.23 build 1576 (Linux kernel driver version 1.05 build 1572) the driver natively supports udev. Once the driver
is loaded it automatically generates the device nodes under /dev. The cards are automatically named to /dev/spcmO, /dev/spcm1,...

You may use all the standard naming and rules that are available with udev.

Start the driver

Starting the driver can be done with the spcm_start.sh script that has been placed in the install directory. If udev is installed the script will only
load the driver. If no udev is installed the start script will load the driver and make the required device nodes /dev/spcmO... for accessing
the drivers. Please keep in mind that you need root rights to load the kernel module and to make the device nodes!

Using the dedicated start script makes sure that the device nodes are matching your system setup even if new hardware and drivers have
been added in between. Background: when loading the device driver it get's assigned a ,major” number that is used to access this driver.
All device nodes point fo this major number instead of the driver name. The major numbers are assigned first come first served. This means
that installing new hardware may result in different major numbers on the next system start.

(c) Spectrum GmbH 25

Linux Software Driver Installation

Get first driver info

After the driver has been loaded successfully some information about the installed boards can be found in the /proc/specm_cards file. Some
basic information from the on-board EEProm is listed for every card.

cat /proc/spcm_cards

Stop the driver
You may want to unload the driver and clean up all device nodes. This can be done using the spcm_end.sh script that has also been placed
in the install directory

Standard Driver Update

A driver update is done with the same commands as shown above. Please make sure that the driver has been stopped before updating it.
To stop the driver you may use the spcm_end.sh script.

Compilation of kernel driver sources (option)

The driver sources are only available for existing customers on special request and against a signed NDA. The driver sources are not part of
the standard delivery. The driver source package contains only the sources of the kernel module, not the sources of the library.

Please do the following steps for compilation and installation of the kernel driver module:

Login as root

It is necessary to have the root rights for installing a driver.

Call the compile script make spem_linux_kerneldrv.sh

This script will examine the type of system you use and compile the kernel with the correct settings. If using a kernel 2.4 the makefile expects
two symbolic links in your system:

e /usr/src/linux pointing fo the correct kernel source directory
o /usr/src/linux/.config pointing to the currently used kernel configuration

The compile script will then automatically call the install script and install the just compiled kernel module in your home directory. The rest of
the installation procedure is similar as explained above.

Library

The kernel driver module only contains the basic hardware functions. The main part of the driver is located inside a dynamically loadable
library that is delivered with the driver. This library is available in 3 different versions:

e spcm_linux_32bit_stdc++5.s0 - supporting libstdc++.50.5 on 32 bit systems
¢ spcm_linux_32bit_stdc++6.50 - supporting libstdc++.50.6 on 32 bit systems
e spcm_linux_64bit_stdc++6.s0 - supporting libstdc++.50.6 on 64 bit systems

The matching version is installed automatically in the /usr/lib directory by the install script. The library is renamed for easy access to
libspcm_linux.so. To access the driver library one must include the library in the compilation:

gcc -o test_prg -lspcm linux test.cpp

To start programming the cards under Linux please use the standard C/C++ examples which are all running under Linux and Windows.

26 M2i.20xx / M2i.20xx-exp Manual

Software Driver Installation Linux

Control Center

The Spectrum Control Center is also available for Linux and need to be

installed separately. The features of the Control Center are described — [ERETNShEIREIICA
in a later chapter in deeper detail. The Control Center has been tested Card | Support | Versions | About |
under all Linux d|str|but|on§ for which Spectrum dellyers pre-compiled — | — [AddDemocsra |
kernel modules. The following packages need to be installed to run the YRR 00002
Control Center: . on-board Memery 64 MByte \
: - max Sampling Rate 125.00 MS/s —_—
- Quarz 1 125 MHz .) ‘
° . - Quarz 2 not installed -
X-Server . . - Production Date Week 6 of 2007 Eirmware Upgrade |
® Qt 4 (version 4.1 or higher) B1- Features 00000023 —
o expOf - Vlersion Base Card 68 |m‘
- Modules 2 —
° freetype - Channels 4 IM‘
. - Firmware versions ——
* fontconfig - Module Information | Transter Speed Test |
. |ibpng & Extension Module Star-Hub 5 Cards
e lib li the Spectrum linux driver lib ilastins
ibspem_linux (the Spectrum linux driver library) | | 50 Jdx 0 M2i.6034 sn 00002 with cable 2
----- ldx 1 M2i.3024 sn 00001 with cable 4
51 M2§ 3024 sn 00001
Qt
Qt is an universal cross platform class library. The Spectrum Control | Quit |
Center is based on that library. The Qi library is available for newer =

Linux distributions as pre-compiled modules and can be downloaded
separately. To avoid any version conflicts the needed Qt libraries for the Control Center are included in the rpm in the correct version. The
libraries are installed automatically under /usr/lib/qt4-spectrum and therefore don't conflict with any pre-installed Qi libraries.

Installation

Use the supplied script install_control_center.sh found in the driver section of the CD by typing as user with root rights inside a terminal win-
dow:

cd /mnt/cdrom/spcm_driver/linux/spcm control center
sh install control center.sh

The script will install the appropriate package for your distribution, called spemcontrol-{Version}.rpm or spcmcontrol-{Version}.deb respective-
ly. The Control Center is installed under KDE/Gnome in the system/system tools section. It may be located directly in this menu or under a
+More Programs” menu. The final location depends on the used Linux distribution. The program itself is installed as /usr/bin/spcmcontrol
and may be started directly from here.

Manual Installation
To manually install the Control Center, first extract the files from the rpm matching your distribution:

rpm2cpio spcmcontrol-{Version}.rpm > ~/spcmcontrol-{Version}.cpio
eel =~/
cpio -id < spcmcontrol-{Version}.cpio

You get the directory structure and the files contained in the rpm package. Copy the binary spcmcontrol to /usr/bin. Copy the libraries to /
usr/lib/qt4-spectrum. Copy the .desktop file to /usr/share/applications. Run ldconfig to update your systems library cache. Finally you can
run spcm_control.

Troubleshooting
If you get a message like the following after starting spcm_control:

spcm_control: error while loading shared libraries: 1ibQtGui.so.4: cannot open shared object file: No such
file or directory

Run Idd spcm_control in the directory where spcm_control resides to see the dependencies of the program. The output may look like this:

libXext.so.6 => /usr/X11R6/1ib/libXext.so.6 (0x4019e000)
1ibX11l.s0.6 => /usr/X11R6/1ib/1libX11l.s0.6 (0x401ad000)
libQtCore.so.4 => not found

libz.so.1l => /lib/libz.so.l (0x402a9000)

libdl.so.2 => /lib/libdl.so.2 (0x402ba000)
libpthread.so.0 => /lib/tls/libpthread.so.0 (0x402be000)
libstdc++.s0.5 => /usr/lib/libstdc++.s0.5 (0x402d0000)

As seen in the output, one of the libraries isn't found inside the library cache of the system. Be sure that this library has been properly installed.
You may then run Idconfig. If this still doesn't help please add the library path to /etc/Id.so.conf and run Idconfig again.

If the libspecm_linux.so is quoted as missing please make sure that you have installed the card driver properly before. If any non-Qt library is
stated as missing please install the matching package of your distribution.

(c) Spectrum GmbH 27

Software Overview Software

Software

This chapter gives you an overview about the structure of the drivers and the software, where to find and how to use the examples. It shows
in detail, how the drivers are included using different programming languages and deals with the differences when calling the driver functions
from them.

This manual only shows the use of the standard driver API. For further information on programming drivers for third-party software
like LabVIEW, MATLAB, DASYLab or VEE an additional manual is required that is delivered with the ordered driver option.

Software Overview

= — == [=== T Wi s o
“ e EmETeEE TR o i S : A Customer specific
S e o= B [Olduser | (B Qo c,pp"m,?fn

B tEE e L] . . g = oI, -

=== = - — B |opplication| " E—

4

MATLAB DASYlab pgilent VEE LabVIEW SBench 5 LabWindows
% / | e H-I
MATLAB, DASYLab, VEE, LabVIEW drivers ‘ M’ o i -FI P. Compiler: Basic,
Cmnﬁl;:bllliy' exrro Delphi, C/C++, ...
et

M2i Driver API Interface

Y
| Drivers for Windows 2000/XP/XPé4/Vista l l Linux drivers ‘

4 v
-m Hardware ml Eﬂ

The Spectrum drivers offer you a common and fast API for using all of the board hardware features. This APl is the same on all supported
operating systems. Based on this APl one can write own programs using any programming language that can access the driver API. This
manual describes in detail the driver AP, providing you with the necessary information to write your own programs.

The optional drivers for third-party products like LabVIEW or DASYLab are also based on this API. The special functionality of these drivers
is not subject of this document and is described with separate manuals delivered with the particular driver option.

Card Control Center

A special card control center is installed together with the Spectrum M2i driver. This control center is available under Windows as a system
setup DLL (*.cpl) and can be accessed directly from the control panel. The different functions of the Spectrum card control center are explained
in detail in the following passages.

28 M2i.20xx / M2i.20xx-exp Manual

Software

Card Control Center

Hardware information

Through the control center you can easily get the main information about all the
installed Spectrum hardware. For each installed card there is a separate tree of
information available. The picture shows the information for one installed card
by example. This given information contains:

¢ Basic information as the type of card, the production date and it's serial num-
ber, as well as the installed memory, the hardware revision of the base card,
the number of available channels and installed acquisition modules

¢ Information about the maximum sampling clock and the available quartz
clock sources.

e The installed features/options in a sub-ree. The shown card is equipped by
example with the option Multiple Recording, Gated Sampling, Timestamp
and ABA-mode.

¢ Detailed Information concerning the installed acquisition modules. In case of
the shown analog acquisition card the information consists of the module’s
hardware revision, of the converter resolution and the last calibration date as
well as detailed information on the available analog input ranges, offset
compensation capabilities and additional features of the inputs.

Firmware information

Another sub-ree is informing about the cards firmware version. As all

M Spectrum Control Center

Ml Spectrum Control Center

Card | Support | versions | about |

Details

[Information H fdd Democard |

i M2, 2030
on-board Memory
max Sampling Rate
Quarz |
Quarz 2
Froduction Date
Features

L 00000001

- 00000002

- 00000003

. 0000DOS0
Version Base Card
Modules
Channsls

i

Version
Resolution
Calbration Date
Input Ranges
Range 0
Range |
Range 2
Range 3
Range 4
Range 5
Range &
E} Programmable Offssts
Range 0
Range |
Range 2
Range 3
Range 4
Range 5
Range &
ALinput features
- bermination
- input type
o user offset
- onboard callbration

i

g

sn 00002

1024 MEyke Delete Demacard
200,00 MSfs

100 MHz Calibration
not installed

wieek 25 of 2006
00000080
Multipls Recording/Replay

Eirmware Uparade
Gated SamplngiReplay Install Featurs
Timestamp
ABA Made Memary Test
0.3
; e e

0.1

& Bit.

wieek 25 of 2006
7

=50 mt to S0 mi
-100 mV ko 100 mb
-200 m\ ko 200 mb
=500 mV ko 500 mb
-1000 mt to 1000 mby
-2000 mt to 2000 mb
-5000 mt to S000 mb

-400 % b 400 %
-400 % b 400 %
-400 % b 400 %
-400 % b 400 %
-400 % b 400 %
-400 % b 400 %
-400 % b 400 %

programmatle
single-ended
programmable in %
offset

21x

Quit

2lx

' . Card | support | versions | About |
Spectrum cards consist of several programmable components, there is
one firmware version per component. peals | R | [sddpemocard |
[=- M2i, 2030 sn 00002
on-board Memory 1024 MByte Delete Democard
. Sampling Rate 200,00 M5
Nearly all of the components firmware can be updated by software. The Carns e —
Quarz 1 100 MHz” . Calibration
1 H 3 o 1 H H - Quarz 2 nat installes
only exception is the configuration device, which only can receive a fac = S -
tory updcﬂe. (- Features 00000080 i Wege.2
Wersion Base Card 0.3
- Modules 1 Install Feature
- Charnels 2

The procedure on how to update the firmware of your Spectrum card
with the help of the card control center is described in a dedicated sec-

1.03

Memory Test

- Clock. D 101
tion |oter on + CnorfFig ;‘gcl.elpdate possible) 1.01 MI
- Module 1.01
- Extensian 0.00
[~ Module Infarmation
Quit |
P
Driver information
20
The Spectrum card control center also offers a way to gather bl L 2
information on the installed and used Spectrum driver. Card | Support versions | apout |
IM2i Driver Version
The information on the driver is available through a dedicated _ _ : :
tab, as the picture is showing in the example. Bl =rson 1.6 Buid 1026
Kernel Yersion Ih\ersion 1.21 Build 925
Th.e p.rovided inform(?ﬁon inForm.s obouT the used type, d.isﬁn- - [‘Windoms W 32 B
guishing between Windows or Linux driver and the 32 bit or
64 bit type.
It also gives direct information about the version of the in-
stalled Spectrum kernel driver and the library (*.dll under
Windows).
The information given here can also be found under Win- Quit
dows using the control panel. For defails in driver details with- 2z
in the control panel please stick to the section on driver
installation in your hardware manual.
(c) Spectrum GmbH 29

Card Control Center Software

Installing and removing Demo cards

With the help of the card control center one can install demo cards

in the system. A demo card is simulated by the Spectrum driver in- 2l
cluding data production for acquisition cards. As the demo card is S TR0 G
§imu|ated on the |owe§t driver level c||. software can be tested includ- e =] [oe =]
ing SBench, own applications and drivers for third-party products
like LabVIEW. The driver supports up to 64 demo cards at the same — Card Detail
time. The simulated memory as well as the simulated software op- Memory [oame =]
tions can be defined when adding a demo card to the system. —
[Feature:

Please keep in mind that these demo cards are only meant to test soft- sy T

v Gated Sampling [aBA Mode

ware and to show certain abilities of the software. They do not sim-
ulate the complete behaviour of a card, especially not any timing
concerning trigger, recording length or FIFO mode notification. The

demo card will calculate data every time directly after been called Gae] |
and give it fo the user application without any more delay. As the

caleulation routine isn't speed optimized, generating demo data
may take more time than acquiring real data and transferring them to the host PC.

[V Digital Inputs{Output [™ star-Hub 5 Cards

Installed demo cards are listed together with the real hardware in the main information tree as described above. Existing demo cards can be
deleted by clicking the related button. It is not possible to change any values of an installed demo card afferwards. If you need to update the
card e.g. with an additional feature, you have to add a new card with the desired features and might delete the old one.

~+,_ The card control center is normally installed together with the hardware driver. To use demo cards on a sys-
tem where no Spectrum cards are installed one needs to copy the control center and the drivers manually.
Therefore please copy all the *.dll and *.cpl files from /spem_driver/win32 to the windows system32 direc-
tory (normally /Windows/System32). After a re-boot the card control center is available for use and installation of
demo cards.

R

Debug logging for support cases

For answering your support questions as fast as possible, the

setup of the card, driver and firmware version and other infor- Card Support | versions | about |

mation is very helpful. B e

Therefore the card control center provides an easy way fo egteve

gather all that information automatically. LogPath e J
™ append Logging to file File Marme: spcmdry_debug. bxt

Different debug log levels are available through the graphical

interface. By default the log level is set to ,no logging” for

maximum performance.

The customer can select different log levels and the path of the

generated ASCII text file. One can also decide to delete the

previous log file first before creating a new one automatically

or to append different logs to one single log file. e |/

For maximum performance of your hard-
ware, please make sure, that the debug logging is set to ,no logging” for normal operation. Please keep in
mind, that a detailed logging in append mode can quickly generate huge log files.

Feature upgrade

All optional features of the M2i cards, that do not require any hardware modifica-

tions can be installed on fielded cards. After Spectrum has received the order, the (Bl Feature Update for MZLZIEE 2l
customer will get a personalized upgrade code. Just start the card control center, 555 iy i et s it e 1 ot e v = e
click on ,install feature” and enter that given code. After a short moment the feature I

will be installed and ready to use. No restart of the host system is required. o | cancel |

For details on the available options and prices please contact your local Spectrum
distributor.

30 M2i.20xx / M2i.20xx-exp Manual

Software Card Control Center

Firmware upgrade

Il Firmware UpgradeM?2i.2030 sn 00002 21x|

One of the major features of the card control center is the ability to update
Press start button to start the upgrade process

the cards firmware by an easy-to-use software. The latest firmware revisions
can be found in the download section of our homepage under Current Status:
http://www .spectrum-instrumentation.com.

Firrmware wersion Status:

A new firmware version is provided there as an installer, that copies the latest cantral: [current 1.02] [new 1,03] [Update nesded]
firmware to your system. All files are located in an dedicated subfolder ,Firm-
wareUpdate” that will be created inside the Spectrum installation folder. Un-
der Windows this folder by default has been created in the standard Module &: [current 1.01] [new 1.01] [Up bo dake]
program installation directory.

Clock: [current 1.01] [new 1.01] [Up to date]

Please do the following steps when wanting to update the firmware of your Press Start button to do the update ...
M2i card:
Firmware update started...
¢ Download the latest software driver for your operating system provided _ _

The firmware update may need a couple of minutes, Please do not abort the

on the Spectrum homepoge' update and do not switch the PC off while the update is running, If the update
e Install the new driver as described in the driver install section of your fails the Firmware of the card may be corrupted and the card may not run any

hardware manual provided with the card. All manuals can also be found S T R LR 55
on the Spectrum homepage in the literature download section. Writing Control ..

¢ Download the installer for the new firmware version.

e Start the installer and follow the instructions given there.

e Start the card control center, select the ,card” tab and press the ,firm- The system needs a cold start to load the firmware properly. Please
" . . do not just reboot, the system MUST be switched off completely!
ware update” button on the right side.

Writing EEProm ...

sucessfully finished

The dialogue then will inform you about the currently installed firmware ver-

sion for the different devices on the card and the new versions that are avail-
able. All devices that will be affected with the update are marked as ,update st | _ el | i Ll/

needed”. Simply start the update or cancel the operation now, as a running
update cannot be aborted.

please shut down your PC completely. The re-powering is required to finally activate the new firmware ver-

f Do not abort or shut down the computer while the firmware update is in progress. After a successful update
sion of your Spectrum card.

Performing card calibration

The card control center also provides an easy way to ac-
cess the automatic card calibration routines of the Spec-
trum A/D converter cards. Depending on the used card Calibration runring ...
family this can affect offset calibration only or also might SelbrteniishedSe=s
include gain calibration. Please refer to the dedicated

chapter in your hardware manual for details. P

Ml Calibration M2i.2030 sn 00002 el b3

Flease disconnect all signals from the inputs and press the start button ko start the automatic offset calibration

Cancel |

Performing memory test

The complete on-board memory of the Spectrum M2i cards can be
tested by the memory test included with the card control center.

Wl Memory Test M2i.2030 sn 00002 . "J

Press the Start button to start the Memary Test of this card

2x

Testing 1024 MByte of memory
. . . . Random Start Pattern: 0x17a52e34
When starting the test, randomized data is generated and written A tart Fattern: Tl ranes
to the on-board memory. After a complete write cycle all the data Virting test dats to card...
is read back and compared with the generated pattern. Eeadiales oo
Depending on the amount of installed on-board memory, and your Memory Test firished sucessful
computers performance this operation might take a while. Mo errors found|

(c) Spectrum GmbH 31

Compadtibility Layer Software

Transfer speed test

The control center allows to measure the bus transfer
speed of an installed Spectrum card. Therefore different 8 z2x
setup is run multiple times and the overall bus transfer Press the Start buttan to start the Spesd Test of this card

speed is measured. To get reliable results it is necessary MotFysize: 512 KByte Wiits 105.5 MEJs Read 107.0 G B
that you disable debug logging as shown above. It is also
highly recommended that no other software or time-con-
suming background threads are running on that system. Motifysize: 2048 kByte Write 1061 MBfs Read 108.0 MB/s
The speed test program runs the following two fests:

Motifysize: 1024 kByte Write 106.0 MB/s Read 108.0 MB/s

Motifysize: 4096 kByte Write 106.1 MB/s Read 108.0 MB/s

® Repetitive Memory Transfers: single DMA data trans- Finished j
fers are repeated and measured. This fest simulates
X T st | concel 100% Quit
the measuring of pulse repetition frequency when = SEML LU Llﬁ

doing multiple single-shots. The test is done using dif-
ferent block sizes. One can estimate the transfer in
relation to the transferred data size on multiple single-shots.

¢ FIFO mode streaming: this test measures the streaming speed in FIFO mode. The test can only use the same direction of transfer the card
has been designed for (card to PC=read for all DAQ cards, PC to card=write for all generator cards and both directions for I/O cards).
The streaming speed is tested without using the front-end to measure the maximum bus speed that can be reached.
The Speed in FIFO mode depends on the selected notify size which is explained later in this manual in greater detail.

The results are given in MB/s meaning MByte per second. To estimate whether a desired acquisition speed is possible to reach one has to
calculate the transfer speed in bytes. There are a few things that has to be put into the calculation:

12, 14 and 16 bit analog cards need two bytes for each sample.

16 channel digital cards need 2 bytes per sample while 32 channel digital cards need 4 bytes and é4 channel digital cards need 8
bytes.

The sum of analog channels must be used to calculate the total transfer rate.

The figures in the Speed Test Utility are given as MBytes, meaning 1024 * 1024 Bytes, 1 MByte = 1048576 Bytes

As an example running a card with 2 14 bit analog channels with 28 MHz produces a transfer rate of [2 channels * 2 Bytes/Sample *
28000000] = 112000000 Bytes/second. Taking the above figures measured on a standard 33 MHz PCl slot the system is just capable of
reaching this transfer speed: 108.0 MB/s = 108 * 1024 * 1024 = 113246208 Bytes/second.

Unfortunately it is not possible to measure transfer speed on a system without having a Spectrum card installed.

Compatibility Layer

The installation of the driver also installs a special compatibility DLL (under Windows). This dIl allows the use of the M2i cards with software
that has been build for the MI cards. The compatibility dll is installed in the Windows system directory under the name spectrum_comp.dll.
There are two ways fo use the compatibility dll:

A—Usa e mOdes Old Application Cld Application using Old application using copied
° Re—compile the old OppliCOﬁOﬂ soft- using Ml card compatibility layer to compatibility layer fo access
ware and including the new library il old driver access Ml and M2i cards M2i cards
spectrum_comp.lib that is delivered — — —
with the compatibility DLL. This is the Application Application Application
recommended usage. The new com-
patibility DLL now has control of the * *
older driver for MI, MC and MX driv-
4 spectrum.dll
ers as well as of the newer driver for spectrum_comp.dll P
(spectrum_comp.dll)

v

program is now capable of running

with old cards as well as with new

cards without any further changes. The spectrum.dll spectrum.dll spem_win32.dll spem_win32.dll
compatibility DLL will examine the sys-

tem and support both card types as ¢ ¢ ¢ ¢

they are found. Any driver updates of
either the older Ml cards or the newer
M?2i will just update the correct part of ‘ ;
the system. SBench 5 uses this mode] e
and |>; therefore capable of supporting Ml card M2i card
all card types although it was never programmed to support the M2i natively.

e If for any reason a re<compile of the existing program is not possible one can simply rename the compatibility DLL spectrum_comp.dll to
spectrum.dll and copy it over the existing spectrum.dll in the Windows system directory. The program won't notice that a different DLL is

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
the M2i cards. The newly compiled : :
oy v
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

) M2i card

Ml card

32 M2i.20xx / M2i.20xx-exp Manual

Software Accessing the cards with SBench 5.x

used and uses the newly installed M2i card. Unfortunately a shared access to either Ml or M2i is not possible using this method.

Abilities and Limitations of the compatibility DLL

The compatibility layer has been done to help you migrating software for the M2i cards and tries to hide the new hardware to older program
as best as possible. However as there are some basic differences between both hardware families not everything can be simulated. The
following list should give you an overview of some aspects of the compatibility layer:

e The data transfer is reorganized internally but still uses the same application data buffers. No data is copied for the data transfers. There-
fore the transfer speed that one will gain is the full transfer speed of the M2i card series which is between 20% and 130% faster than the
one of the Ml series.

® As the compatibility layer tries to hide the new driver as much as possible none of the new or improved features are available to older
programs. If you need fo use a new feature please use the new driver.

¢ The M2i driver checks the given parameters very carefully while the older driver was sometimes a little lazy and some false commands
and driver parameters weren't noticed or were noticed but didn’t lock the driver. The M2i will check every register settings at every time
and lock the driver if an error occurs. It may be necessary to fix the application code for handling this more strict error checking.

¢ The compatibility DLL doesn’t support all special features that have been added to the Ml series over the years as some of them are dis-
continued in the new hardware. As long as the application program sticks to the main features this won't be a problem.

¢ The compatibility DLL does not add any delays from the Ml series as the M2i series has been optimized for small delays. As an example,
the Ml cards had a fixed delay from trigger to first sample when using Multiple Recording. The M2i cards now have a programmable pre-
trigger size. When using the compatibility layer this pretrigger is set to the minimum and data will be visible before the trigger event.

¢ Although the application software doesn’t see a difference between old an new cards there is no chance to synchronize both card types
together as the synchronization option uses different connectors, different signals and different timing.

Accessing the cards with SBench 5.x

After the installation of the cards and the drivers it can be useful to first test the card function
with a ready to run software before starting with programming. A full version of SBench 5.x is
delivered with the card on CD. The program supports all actual acquisition, generator and dig-
ital I/O boards from Spectrum. Depending on the used card and the software setup, one could
use SBench as a digital storage oscilloscope, a spectrum analyzer, a logic analyzer or simply
as a data recording front end. Different export and import formats allow the use of SBench to-
gether with a variety of other programs.

As the above overview is showing, SBench 5.x was originally designed for the use with the
MI/MC/MX series boards. To make it work with the new M2i series cards, SBench uses the
included compatibility layer. Please note, that not all of the new features and functions of the
M2i series cards are available under SBench 5.x! On the CD you'll find an install version of
SBench in the directory /Install/SBench. There's also a pre-installed program version on CD
that can be started directly from CD without installing to hard disk. This file can be found in the
/Programs/SBench5 directory. Also on CD is a program description that shows in detail how
SBench works and what settings have to be done to use SBench in one of the different modes. The manual is found in the path /Internet/
english/swmanuals/SBench. The current version of SBench can be down loaded free of charge directly from the Spectrum website http://
www.spectrum-instrumentation.com. Please go to the download section and get the latest version there.

under Linux. At the moment there is no graphical ready-to-run software for Linux available. Please use the driver examples to examine
whether the board is correctly installed under Linux.

SBench 5 has been designed to run under Windows 2000 and Windows XP, Windows XP64 and Windows Vista. It does not run f

C/C++ Driver Interface

C/C++ is the main programming language for which the drivers have been build up. Therefore the interface to C/C++ is the best match. All
the small examples of the manual showing different parts of the hardware programming are done with C. As the libraries offer a standard
inferface it is easy to access the libraries also with other programming languages like Delphi or Basic. Please read the following chapters for
additional information on this.

Header files

The basic task before using the driver is to include the header files that are delivered on CD together with the board. The header files are
found in the directory /Driver/header_c. Please don't change them in any way because they are updated with each new driver version to
include the new registers and new functionality.

dlityp.h Includes the platform specific definitions for data types and function declarations. All data types are based on this definitions. The use of this type definition file
allows the use of examples and programs on different platforms without changes to the program source. The header file supports Microsoft Visual C++, Bor-
land C++ Builder and GNU C/C++ directly. When using other compilers it might be necessary to make a copy of this file and change the data types accord-
ing to this compiler.

regs.h Defines all registers and commands which are used in the Spectrum driver for the different boards. The registers a board uses are described in the board spe-
cific part of the documentation. This header file is common for all cards. Therefore this file also contains a huge number of registers used on other card types
than the one described in this manual. Please stick to the manual to see which registers are valid for your type of card.

spcm_drv.h Defines the functions of the used SpcM driver. All definitions are taken from the file dlltyp.h. The functions itself are described below.

spcerr.h Contains all error codes used with the Spectrum driver. All error codes that can be given back by any of the driver functions are also described here shortly all.
The error codes and their meaning are described in detail in the appendix of this manual.

(c) Spectrum GmbH 33

C/C++ Driver Interface Software

Example for including the header files:

/] === driver includes -----

#include "dlltyp.h" // 1lst include
#include "regs.h" // 2nd include
#include "spcerr.h" // 3rd include
#include "spcm drv.h" // 4th include

Please always keep the order of including the four Spectrum header files. Otherwise some or all of the func-
A tions do not work properly on compiling your program will be impossible!

General Information on Windows 64 bit drivers

| After installation of the Spectrum 64 bit driver there are two general ways to access the hardware and to de-
velop applications. If you're going to develop a real 64 bit application it is necessary to access the 64 bit
driver dll (spcm_win64.dll) as only this driver dll is supporting the full 64 bit address range.

[32 8t Applcation | [64 Bt Applcas

[a2BnDiverou | [64 e Diverou |
But it is still possible to run 32 bit applications or to develop 32 bit applications even under Windows 64 bit.
PYTTT AT Therefore the 32 bit driver dll (spcm_win32.dll) is also installed in the system. The Spectrum SBench5 software
is for example running under Windows 64 bit using this driver. The 32 bit dll of course only offers the 32 bit
address range and is therefore limited to access only 4 GByte of memory. Beneath both drivers the 64 bit ker-
[Hardwara | nel driver is running.

Mixing of 64 bit application with 32 bit dll or vice versa is not possible.

Microsoft Visual C++ 6.0 and 2005 32 Bit

Include Driver

The driver files can be directly included in Microsoft C++ by simply using the library file spcm_win32_msvcpp.lib that is delivered together
with the drivers. The library file can be found on the CD in the path /spcm_examples/c_cpp/c_header. Please include the library file in your
Visual C++ project as shown in the examples. All functions described below are now available in your program.

Examples

Examples can be found on CD in the path /spcm_examples/c_cpp. This directory includes a number of different examples that can be used
with any card of the same type (e.g. A/D acquisition cards, D/A acquisition cards). You may use these examples as a base for own pro-
gramming and modify them as you like. The example directories contain a running workspace file for Microsoft Visual C++ 6.0 (*.dsw) as
well as project files for Microsoft Vsual Studio 2005 (*.vcproj) that can be directly loaded and compiled.

There are also some more board type independent examples in separate subdirectory. These examples show different aspects of the cards
like programming options or synchronization and can be combined with one of the board type specific examples.

As the examples are build for a card class there are some checking routines and differentiation between cards families. Differentiation aspects
can be number of channels, data width, maximum speed or other details. It is recommended to change the examples matching your card
type to obtain maximum performance. Please be informed that the examples are made for easy understanding and simple showing of one
aspect of programming. Most of the examples are not optimized for maximum throughput or repetition rates.

Microsoft Visual C++ 64 Bit

Depending on your version of the Visual Studio suite it may be necessary to install some additional 64 bit components (SDK) on your system.
Please follow the instructions found on the MSDN for further information.

Include Driver

The driver files can be directly included in Microsoft C++ by simply using the library file spcm_win64_msvcpp.lib that is delivered together
with the drivers. The library file can be found on the CD in the path /spcm_examples/c_cpp/c_header. All functions described below are
now available in your program.

Borland C++ Builder 32 Bit

Include Driver

The driver files can be easily included in Borland C++ Builder by simply using the library file spcm_win32_bcppb.lib that is delivered together
with the drivers. The library file can be found on the CD in the path /spcm_examples/c_cpp/c_header. Please include the library file in your
Borland C++ Builder project as shown in the examples. All functions described below are now available in your program.

Examples
The Borland C++ Builder examples share the sources with the Visual C++ examples. Please see above chapter for a more detailed documen-
tation of the examples. In each example directory are project files for Visual C++ as well as Borland C++ Builder.

34 M2i.20xx / M2i.20xx-exp Manual

Software C/C++ Driver Interface

Linux Gnu C/C++ 32/64 Bit

Include Driver

The interface of the linux drivers does not differ from the windows interface. Please include the spem_linux.lib library in your makefile to have
access to all driver functions. A makefile may look like this:

COMPILER = gcc
EXECUTABLE = test_prg
LIBS = -lspcm_linux
OBJECTS = test.o\
test2.0

all: $(EXECUTABLE)

$ (EXECUTABLE) : $ (OBJECTS)
$ (COMPILER) $(CFLAGS) -o $(EXECUTABLE) $(LIBS) $(OBJECTS)

%.0: %.cpp
$ (COMPILER) $(CFLAGS) -0 $*.o0 -c $*.cpp

Examples
The Gnu C/C++ examples share the source with the Visual C++ examples. Please see above chapter for a more detailed documentation of
the examples. Each example directory contains a makefile for the Gnu C/C++ examples.

C++ for .NET

Please see the next chapter for more details on the .NET inclusion.

Other Windows C/C++ compilers 32 Bit

Include Driver

To access the driver, the driver functions must be loaded from the driver dll. Most compiler offer special tools to generate a matching library
(e.g. Borland offers the implib tool that generates a matching library out of the windows driver dll). If such a tool is available it is recommended
to use it. Otherwise the driver functions need to loaded from the dll using standard Windows functions. There is one example in the example
directory /spcm_examples/c_cpp/dIl_loading that shows the process.

Example of function loading:

hDLL = LoadLibrary ("spcm win32.dl11");
pfn_spcm_hOpen = (SPCM_HOPEN*) GetProcAddress (hDLL, "_spcm_hOpen@4”);
pfn_spcm vClose = (SPCM _VCLOSE*) GetProcAddress (hDLL, "_spcm vClose@4");

Other Windows C/C++ compilers 64 Bit

Include Driver

To access the driver, the driver functions must be loaded from the driver dll. Most compiler offer special tools to generate a matching library
(e.g. Borland offers the implib tool that generates a matching library out of the windows driver dll). If such a tool is available it is recommended
to use it. Otherwise the driver functions need to loaded from the dll using standard Windows functions. There is one example in the example
directory /spcm_examples/c_cpp/dIl_loading that shows the process for 32 bit environments.

Example of function loading:

hDLL = LoadLibrary ("spcm win64.d11");
pfn _spcm hOpen = (SPCM HOPEN*) GetProcAddress (hDLL, " spcm hOpen@4");
pfn_spcm vClose = (SPCM_VCLOSE*) GetProcAddress (hDLL, "_spcm_vclose@4");

National Instruments LabWindows/CVI

Include Drivers

To use the Spectrum driver under LabWindows/CV! it is necessary to first load the functions from the driver dIl. Please use the library file
spcm_win32_cvi.lib to access the driver functions.

Examples
Examples for LabWindows/CVI can be found on CD in the directory /spcm_examples/cvi. Please mix these examples with the standard C/
C++ examples to have access to all functions and modes of the cards.

(c) Spectrum GmbH 35

Driver functions Software

Driver functions

The driver contains seven main functions to access the hardware.

Own types used by our drivers

To simplify the use of the header files and our examples with different platforms and compilers and to avoid any implicit type conversions we
decided to use our own type declarations. This allows us to use platform independent and universal examples and driver interfaces. If you
do not stick to these declarations please be sure to use the same data type width. However it is strongly recommended that you use our defined
type declarations to avoid any hard to find errors in your programs. If you're using the driver in an environment that is not natively supported
by our examples and drivers please be sure to use a type declaration that represents a similar data width

Declaration Type Declaration Type

int8 8 bit signed infeger (range from -128 to +127) uint8 8 bit unsigned integer (range from O to 255)

int16 16 bit signed integer (range from -32768 to 32767) uint16 16 bit unsigned integer (range from 0 to 65535)

int32 32 bit signed integer (range from -2147483648 to 2147483647) uint32 32 bit unsigned integer (range from O to 4294967296)
inté4 64 bit signed integer (full range) uinté4 64 bit unsigned integer (full range)

drv_handle handle to driver, implementation depends on operating system platform

Notation of variables and functions

In our header files and examples we use a common and reliable form of notation for variables and functions. Each name also contains the
type as a prefix. This notation form makes it easy to see implicit type conversions and minimizes programming errors that results from using
incorrect types. Feel free to use this notation form for your programs also-

Declaration Notation Declaration Notation

int8 byName (byte) uint8 cName (character)

int16 nName uint16 wName (word)

int32 IName (long) uint32 dwName (double word)

int64 IIName (long long) uint64 qwName (quad word)

int32* pIName (pointer to long) char szName (string with zero termination)

Function spcm hOpen

This function initializes and opens an installed card supporting the new SpcM driver interface. At the time of printing this manual this are all
cards of the M2i cards. The function returns a handle that has to used for driver access. If the card can’t be found or the loading of the driver
generated an error the function returns a NULL. When calling this function all card specific installation parameters are read out from the
hardware and stored within the driver. It is only possible to open one device by one software as concurrent hardware access may be very
critical to system stability. As a result when trying to open the same device twice an error will raise and the function returns NULL.

Function spcm_hOpen (char* szDeviceName):

drv_handle _stdcall spcm_hOpen (// tries to open the device and returns handle or error code
char* szDeviceName) ; // name of the device to be opened

Under Linux the device name in the function call need to be a valid device name. Please change the string according to the location of the
device if you don't use the standard linux device names. The driver is installed as default under /dev/spcmO, /dev/spcm1 and so on. The
kernel driver numbers the devices starting with 0.

Under windows the only part of the device name that is used is the tailing number. The rest of the device name is ignored. Therefore to keep
the examples simple we use the Linux notation in all our examples. The tailing number gives the index of the device to open. The Windows
kernel driver numbers all devices that it finds on boot time starting with O.

Example
drv_handle hDrv; // returns the handle to the opended driver or NULL in case of error
hDrv = spcm_hOpen ("/dev/spcmO"); // string to the driver to open
if (!hDrv)

printf (“open of driver failed\n”);

If the function returns a NULL it is possible to read out the error description of the failed open function by simply passing this NULL to the error
function. The error function is described in one of the next topics.

Function spcm vClose
This function closes the driver and releases all allocated resources. After closing the driver handle it is not possible to access this driver any
more. Be sure to close the driver if you don’t need it any more to allow other programs to get access to this device.

Function spem_vClose:

void _stdcall spcm_vClose (// closes the device
drv_handle hDevice) ; // handle to an already opened device

36 M2i.20xx / M2i.20xx-exp Manual

Software Driver functions

Example:

spcm_vClose (hDrv);

Function spcm_dwSetParam

All hardware settings are based on software registers that can be set by one of the functions spcm_SetParam. These functions sets a register
to a defined value or executes a command. The board must first be initialized by the spcm_hOpen function. The parameter IRegister must
have a valid software register constant as defined in regs.h. The available software registers for the driver are listed in the board specific
part of the documentation below. The function returns a 32 bit error code if an error occurs. If no error occurs the function returns ERR_OK,
what is zero.

Function spcm_dwSetParam

uint32 stdcall spcm dwSetParam i32 (// Return value is an error code
drv_handle hDevice, // handle to an already opened device
int32 lRegister, // software register to be modified
int32 1vValue) ; // the value to be set

uint32 _stdcall spcm dwSetParam i64m (// Return value is an error code
drv_handle hDevice, // handle to an already opened device
int32 1Register, // software register to be modified
int32 1lValueHigh, // upper 32 bit of the value. Containing the sign bit !
uint32 dwValueLow) ; // lower 32 bit of the value.

uint32 _stdcall spcm dwSetParam i64 (// Return value is an error code
drv_handle hDevice, // handle to an already opened device
int32 1Register, // software register to be modified
int64 11lvalue) ; // the value to be set

Example:

if (!spcm_dwSetParam i32 (hDrv, SPC_MEMSIZE, 16384))
printf (“Error when setting memory size\n”);

This example sets the memory size to 16 kSamples (16384). If an error occurred the example will show a short error message

Function spcm dwSpcGetParam

All hardware settings are based on software registers that can be read by one of the functions spcm_dwGetParam. These functions reads an
internal register or status information. The board must first be initialized by the spcm_hOpen function. The parameter IRegister must have a
valid software register constant as defined in the regs.h file. The available software registers for the driver are listed in the board specific part
of the documentation below. The function returns a 32 bit error code if an error occurs. If no error occurs the function returns ERR_OK, what
is zero.

Function spcm_dee’rPo ram

uint32 _stdcall spcm dwGetParam i32 (// Return value is an error code
drv_handle hDevice, // handle to an already opened device
int32 1Register, // software register to be read out
int32* plvalue) ; // pointer for the return value
uint32 _stdcall spcm dwGetParam i64m (// Return value is an error code
drv_handle hbDevice, // handle to an already opened device
int32 1Register, // software register to be read out
int32* plvalueHigh, // pointer for the upper part of the return value
uint32* pdwValueLow) ; // pointer for the lower part of the return value
uint32 _stdcall spcm dwGetParam i64 (// Return value is an error code
drv_handle hbDevice, // handle to an already opened device
int32 1Register, // software register to be read out
int64* pllvalue) ; // pointer for the return value
Example:

int32 1lSerialNumber;
spcm_dwGetParam_i32 (hDrv, SPC_PCISERIALNO, &lSerialNumber);
printf (“Your card has serial number: %$05d\n”, lSerialNumber) ;

The example reads out the serial number of the installed card and prints it. As the serial number is available under all circumstances there is
no error checking when calling this function.

Different call types of spem dwSetParam and spcm dwGetParam: i32, i64, i64m

The three functions only differ in the type of the parameters that is used to call them. As some of the registers can exceed the 32 bit integer
range (like memory size or post trigger) it is recommended to use the _i64 function to access these registers. However as there are some

(c) Spectrum GmbH 37

Driver functions Software

programs or compilers that don't support 64 bit integer variables there are two functions that are limited to 32 bit integer variables. In case
that you do not access registers that exceed 32 bit integer please use the _i32 function. In case that you access a register which exceeds 64
bit value please use the _ié4m calling convention. Inhere the 64 bit value is splitted in a low double word part and a high double word part.

Please be sure fo fill both parts with valid information.

If accessing 64 bit registers with 32 bit functions the behaviour differs depending on the real value that is currently located in the register.
Please have a look at this table to see the different reactions depending on the size of the register:

Internal register read/write Function type Behaviour

32 bit register read spem_dwGetParam_i32 value is returned as 32 bit integer in plValue

32 bit register read spcm_dwGetParam_i64 value is returned as 64 bit integer in pllValue

32 bit register read spem_dwGetParam_i64m value is returned as 64 bit integer, the lower part in plValuelow, the upper part in plValueHigh. The upper part can
be ignored as it's only a sign extension

32 bit register write spcm_dwSetParam_i32 32 bit value can be directly written

32 bit register write spcm_dwSetParam_i64 64 bit value can be directly written, please be sure not to exceed the valid register value range

32 bit register write spcm_dwSetParam_i64m 32 bit value is written as [IValuelow, the value [IValueHigh needs to contain the sign extension of this value. In case
of IIValuelow being a value >= 0 lIValueHigh can be 0, in case of lIValuelow being a value < 0, lIValueHigh has to
be -1.

64 bit register read spcm_dwGetParam_i32 If the internal register has a value that is inside the 32 bit integer range (-2G up to (2G - 1)) the value is returned
normally. If the internal register exceeds this size an error code ERR_EXCEEDSINT32 is returned. As an example:
reading back the installed memory will work as long as this memory is < 2 GByte. If the installed memory is >= 2
GByte the function will return an error.

64 bit register read spcm_dwGetParam_i64 value is returned as 64 bit integer value in pllValue independent of the value of the internal register.

64 bit register read spcm_dwGetParam_ié4m the internal value is splitted into a low and a high part. As long as the internal value is within the 32 bit range, the
low part plValuelow contains the 32 bit value and the upper part plValueHigh can be ignored. If the internal value
exceeds the 32 bit range it is absolutely necessary to take both value parts into account.

64 bit register write spcm_dwSetParam_i32 the value to be written is limited to 32 bit range. If a value higher than the 32 bit range should be written, one of
the other function types need to used.

64 bit register write spcm_dwSetParam_i64 the value has to be splitted into two parts. Be sure o fill the upper part [ValueHigh with the correct sign extension
even if you only write a 32 bit value as the driver every time interprets both parts of the function call.

64 bit register write spcm_dwSetParam_i64m the value can be written directly independent of the size.

Function spcm dwGetContBuf

This function reads out the internal continuous memory buffer if one has been allocated. If no buffer has been allocated the function returns
a size of zero and a NULL pointer. You may use this buffer for data transfers. As the buffer is continuously allocated in memory the data
transfer will speed up by 15% - 25%. Please see further details in the appendix of this manual.

uint32 _stdcall

spcm_dwGetContBuf_ i64m (//

uint32 _stdcall spcm_dwGetContBuf i64 (// Return value is an error code
drv_handle hbDevice, // handle to an already opened device
uint32 dwBufType, // type of the buffer to read as listed above under SPCM_BUF XXXX
void** ppvDataBuffer, // address of available data buffer
uint64* pawContBuflLen) ; // length of available continuous buffer

Return value is an error code

drv_handle hbDevice, // handle to an already opened device

uint32 dwBufType, // type of the buffer to read as listed above under SPCM_BUF_ XXXX
void** ppvDataBuffer, // address of available data buffer

uint32* pdwContBufLenH, // high part of length of available continuous buffer

uint32* pdwContBufLenL) ; // low part of length of available continuous buffer

These functions have been added in driver version 1.36. The functions are not available in older driver ver-
sions.

A\

Function spcm_dwDefTransfer

The spcm_dwDefTransfer function defines a buffer for a following data transfer. This function only defines the buffer there is no data transfer
performed when calling this function. Instead the data transfer is started with separate register commands that are documented in a later
chapter. At this position there is also a detailed description of the function parameters.

Please make sure that all parameters of this function match. It is especially necessary that the buffer address is a valid address pointing to
memory buffer that has at least the size that is defined in the function call. Please be informed that calling this function with non valid param-
eters may crash your system as these values are base for following DMA transfers.

The use of this function is described in greater detail in a later chapter.

38 M2i.20xx / M2i.20xx-exp Manual

Software Driver functions

Function spcm_dwDefTransfer

uint32 _stdcall spcm dwDefTransfer i64m(// Defines the transer buffer by 2 x 32 bit unsigned integer

drv_handle hDevice, // handle to an already opened device

uint32 dwBufType, // type of the buffer to define as listed above under SPCM_BUF_XXXX
uint32 dwDirection, // the transfer direction as defined above

uint32 dwNotifySize, // no. of bytes after which an event is sent (0=end of transfer)
void* pvDataBuffer, // pointer to the data buffer

uint32 dwBrdOffsH, // high part of offset in board memory

uint32 dwBrdOffsL, // low part of offset in board memory

uint32 dwTransferLenH, // high part of transfer buffer length

uint32 dwTransferLenLl) ; // low part of transfer buffer length

uint32 _stdcall spcm dwDefTransfer i64 (// Defines the transer buffer by using 64 bit unsigned integer values

drv_handle hDevice, // handle to an already opened device

uint32 dwBufType, // type of the buffer to define as listed above under SPCM BUF XXXX
uint32 dwDirection, // the transfer direction as defined above

uint32 dwNotifySize, // no. of bytes after which an event is sent (0O=end of transfer)
void* pvDataBuffer, // pointer to the data buffer

uint64 qwBrdOffs, // offset for transfer in board memory

uint64 gwTransferlen) ; // buffer length

This function is available in two different formats as the spcm_dwGetParam and specm_dwSetParam functions are. The background is the
same. As long as you're using a compiler that supports 64 bit integer values please use the _ié4 function. Any other platform need to use
the _ié4m function and split offset and length in two 32 bit words.

Example:

intl6* pnBuffer = new intl6[8192];
if (!spcm_dwDefTransfer i64 (hDrv, SPCM BUF DATA, SPCM DIR CARDTOPC, 0, (void*) pnBuffer, 16384))
printf (“DefTransfer failed\n”);

The example defines a date buffer of 8 kSamples of 16 bit integer values = 16 kByte (16384 byte| for a transfer from card to PC memory.
As notify size is set to O we only want to get an event when the transfer has finished.

Function spcm_vinvalidateBuf

The invalidate buffer function is used to tell the driver that the buffer that has been set with spcm_dwDefTransfer call is no longer valid. it is

necessary fo use the same buffer type as the driver handles different buffers at the same time. Call this function if you want to delete the buffer
memory after calling the spcm_dwDefTransfer function. If the buffer already has been transferred after calling spcm_dwDefTransfer this func-
tion has no need. When calling spcm_dwDefTransfer any further defined buffer is automatically invalidated.

Function spcm_vInvalidateBuf

uint32 stdcall spcm dwInvalidateBuf (// invalidate the transfer buffer
drv_handle hDevice, // handle to an already opened device
uint32 dwBufType) ; // type of the buffer to invalidate as listed above under SPCM_BUF_XXXX

Function spcm dwGetErrorinfo

The function returns complete error information on the last error that has occurred. The error handling itself is explained in a later chapter in
greater detail. When calling this function please be sure to have a text buffer allocated that has at least ERRORTEXTLEN length. The error text
function returns a complete description of the error including the register/value combination that has raised the error and a short description
of the error defails. In addition it is possible to get back the error generating register/value for own error handling. If not needed the buffers
for register/value can be left to NULL.

Function spcm_dwGetErrorinfo

uint32 _stdcall spcm dwGetErrorInfo i32 (

drv_handle hDevice, // handle to an already opened device
uint32* pdwErrorReg, // adress of the error register (can zero if not of interest)
int32* plErrorValue, // adress of the error value (can zero if not of interest)
char pszErrorTextBuffer [ERRORTEXTLEN]); // text buffer for text error

Example:

char szErrorBuf [ERRORTEXTLEN] ;
if (spcm_dwSetData_i32 (hDrv, SPC_MEMSIZE, -1))
{
spcm_dwGetErrorInfo 132 (hDrv, NULL, NULL, szErrorBuf);
printf (“Set of memsize failed with error message: %$s\n”, szErrorBuf);

}

(c) Spectrum GmbH 39

Borland Delphi (Pascal) Programming Interface Software

Borland Delphi (Pascal) Programming Interface

Driver interface

The driver interface is located in the sub-directory d_header and contains the following files. The files need to be included in the delphi project
and has to be put into the ,uses” section of the source files that will access the driver. Please do not edit any of these files as they're regularly
updated if new functions or registers have been included.

file spcm win32.pas
The file contains the interface to the driver library and defines some needed constants and variable types. All functions of the delphi library
are similar to the above explained standard driver functions:

[/ —===-= device handling functions -----
function spcm hOpen (strName: pchar): int32; stdcall; external 'spcm win32.dll' name ' spcm hOpen@4';
procedure spcm_vClose (hDevice: int32); stdcall; external 'spcm win32.dll' name '_spcm vClose@4';

function spcm dwGetErrorInfo i32 (hDevice: int32; var lErrorReg, lErrorValue: int32; strError: pchar): uint32;
stdcall; external 'spcm win32.dll' name '_spcm_dwGetErrorInfo 132Q@16'

Jl ===== register access functions -----
function spcm_dwSetParam_i32 (hDevice, lRegister, lValue: int32): uint32;
stdcall; external 'spcm win32.dll' name ' spcm_dwSetParam i32@12°';

function spcm_dwSetParam_i64 (hDevice, lRegister: int32; 1llValue: int64): uint32;
stdcall; external 'spcm win32.dll' name ' spcm_dwSetParam 1i64Q@16°';

function spcm_dwGetParam_i32 (hDevice, lRegister: int32; var plValue: int32): uint32;
stdcall; external 'spcm win32.dll' name ' spcm_dwGetParam i32@12°';

function spcm_dwGetParam_i64 (hDevice, lRegister: int32; var pllValue: int64): uint32;
stdcall; external 'spcm win32.dll' name ' spcm_dwGetParam i64@12°';

[l ===== data handling -----
function spcm_dwDefTransfer 164 (hDevice, dwBufType, dwDirection, dwNotifySize: int32; pvDataBuffer: Pointer;
11BrdOffs, llTransferLen: int64): uint32;

stdcall; external 'spcm win32.dll' name '_spcm_dwDefTransfer_ i64@36';
function spcm dwInvalidateBuf (hDevice, 1Buffer: int32): uint32;
stdcall; external 'spcm win32.dll' name ' spcm_dwlInvalidateBuf@8';

The file also defines types used inside the driver and the examples. The types have similar names as used under C/C++ to keep the examples
more simple to understand and allow a better comparison.

file SpcRegs.pas

The SpcRegs.pas file defines all constants that are used for the driver. The constant names are the same names as used under the C/C++
examples. All constants names will be found throughout this hardware manual when certain aspects of the driver usage are explained. It is
recommended to only use these constant names for better visibility of the programs:

const SPC_M2CMD = 100; { write a command }

const M2CMD_CARD_RESET = $00000001; { hardware reset }

const M2CMD_CARD_WRITESETUP = $00000002; { write setup only }

const M2CMD_CARD_START = $00000004; { start of card (including writesetup) }
{ enable trigger engine }

const M2CMD_CARD_ENABLETRIGGER = $00000008;

file SpcErr.pas

The SpeErr.pas file contains all error codes that may be given back by the driver.

Including the driver files

To use the driver function and all the defined constants it is necessary to include the files into the project as

shown in the picture on the right. The project overview is taken from one of the examples delivered on CD.
Besides including the driver files in the project it is also necessary to include them in the uses section of the £l x

source files where functions or constants should be used: REY e || e

Drateien |

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ExtCtrls,

SpCm_scope.exe
@ SpcEn.paz

= 5] SPCM_$COpe_main

! B spom_scope_main pas
= formbdain

@ spom_windZ. pas

@ SpcRegs.pas

SpcRegs, SpcErr, spcm win32;

40 M2i.20xx / M2i.20xx-exp Manual

Software Borland Delphi (Pascal) Programming Interface

Examples

Examples for Delphi can be found on CD in the directory /spcm_examples/delphi. The directory contains the above mentioned delphi header
files and a couple of universal examples, each of them working with a certain type of card. Please feel free to use these examples as a base
for your programs and to modify them in any kind.

spcm_scope

The example implements a very simple scope program that makes single acquisitions on button pressing. A fixed setup is done inside the
example. The spcm_scope example can be used with any analog data acquisition card from Spectrum. It covers cards with 1 byte per sample
(8 bit resolution) as well as cards with 2 bytes per sample (12, 14 and 16 bit resolution)

The program shows the following steps:

e Initialization of a card and reading of card information like type, function and serial number
¢ Doing a simple card setup

e Performing the acquisition and waiting for the end interrupt

¢ Reading of data, re-scaling it and displaying waveform on screen

(c) Spectrum GmbH 41

Visual Basic Programming Interface and Examples Software

Visual Basic Programming Interface and Examples

Driver interface

The driver interface is located in the sub-directory b_header and contains the following files. The files need to be included in the basic project.
Please do not edit any of these files as they’re regularly updated if new functions or registers have been included.

file spcm win32 decl.bas

The file contains the interface to the driver library and defines some needed constants. All functions of the visual basic library are similar to
the above explained standard driver functions:

————— card handling functions -----
Public Declare Function spcm_hOpen Lib "spcm win32.dl11" Alias "_spcm hOpen@4"
(ByVal szDeviceName As String) As Long

Public Declare Function spcm vClose Lib "spcm _win32.dll" Alias "_spcm vClose@4"
(ByVal hDevice As Long) As Long

Public Declare Function spcm dwGetErrorInfo_i32 Lib "spcm win32.dll" Alias "_spcm dwGetErrorInfo_ i32@16"
(ByVal hDevice As Long, ByRef 1lErrorReg, ByRef lErrorValue, ByVal szErrorText As String) As Long

U ooooo software register handling -----
Public Declare Function spcm dwGetParam i32 Lib "spcm win32.d11" Alias "_spcm dwGetParam i32@12"
(ByVal hDevice As Long, ByVal lRegister As Long, ByRef 1lValue As Long) As Long

Public Declare Function spcm dwGetParam i64m Lib "spcm win32.dl11l" Alias "_spcm dwGetParam 164m@l6"
(ByVal hDevice As Long, ByVal lRegister As Long, ByRef 1lValueHigh As Long, ByRef 1lValueLow As Long) As Long

Public Declare Function spcm dwSetParam i32 Lib "spcm win32.d11" Alias "_spcm dwSetParam_ i32@12"
(ByVal hDevice As Long, ByVal lRegister As Long, ByVal lValue As Long) As Long

Public Declare Function spcm dwSetParam i64m Lib "spcm win32.dl1l" Alias "_spcm dwSetParam 164m@l6"
(ByVal hDevice As Long, ByVal lRegister As Long, ByVal 1lValueHigh As Long, ByVal 1lValueLow As Long) As Long

't data handling -----

Public Declare Function spcm dwDefTransfer i164m Lib "spcm win32.dl11" Alias " spcm dwDefTransfer i164m@36"
(ByVal hDevice As Long, ByVal dwBufType As Long, ByVal dwDirection As Long, ByVal dwNotifySize As Long, ByRef
pvDataBuffer As Any, ByVal dwBrdOffsH As Long, ByVal dwBrdOffsL As Long, ByVal dwTransferLenH As Long, ByVal
dwTransferLenlL As Long) As Long

Public Declare Function spcm_dwInvalidateBuf Lib "spcm _win32.dl11" Alias "_spcm dwInvalidateBuf@8"
(ByVal hDevice As Long, ByVal 1Buffer As Long) As Long

file SpcRegs.bas

The SpcRegs.bas file defines all constants that are used for the driver. The constant names are the same names as used under the C/C++
examples. All constants names will be found throughout this hardware manual when certain aspects of the driver usage are explained. It is
recommended to only use these constant names for better visibility of the programs:

Public Const SPC_M2CMD = 100 ' write a command

Public Const M2CMD CARD RESET = &Hlé& hardware reset

Public Const M2CMD_CARD WRITESETUP = &H2& ' write setup only

Public Const M2CMD_CARD START = &H4& start of card (including writesetup)
Public Const M2CMD CARD ENABLETRIGGER = &H8& enable trigger engine

file SpcErr.bas

The SpeErr.bas file contains all error codes that may be given back by the driver.

Including the driver files
To use the driver function and all the defined constants it is necessary to include the files into the
project as shown in the picture on the right. The project overview is taken from one of the examples RS RELTTS A

delivered on CD. = |

Eg spcm_scope {spcm_scope.vbp)
E| 5 Formulare

-5 Module

482 Declarations ({spcm_win32_decl.bas)
44 Modulet (SpcRegs.bas)

4 Modulez (SpcErr.bas)

42 M2i.20xx / M2i.20xx-exp Manual

Software Visual Basic Programming Interface and Examples

Examples

Examples for Visual Basic can be found on CD in the directory /spcm_examples/basic. The directory contains the above mentioned basic
header files and a couple of universal examples, each of them working with a certain type of card. Please feel free to use these examples as
a base for your programs and to modify them in any kind.

spcm_scope

The example implements a very simple scope program that makes single acquisitions on button pressing. A fixed setup is done inside the
example. The spcm_scope example can be used with any analog data acquisition card from Spectrum. It covers cards with 1 byte per sample
(8 bit resolution) as well as cards with 2 bytes per sample (12, 14 and 16 bit resolution)

The program shows the following steps:

Initialization of a card and reading of card information like type, function and serial number
Doing a simple card setup
Performing the acquisition and waiting for the end interrupt

L]
°
L)
¢ Reading of data, re-scaling it and displaying waveform on screen

(c) Spectrum GmbH 43

.NET programming languages Software

.NET programming languages

Libra

For using the driver with a .NET based language Spectrum delivers a special library that capsulates the driver in a .NET object. By adding
this object to the project it is possible to access all driver functions and constants from within your .NET environment.

There is one small console based example for each supported .NET language that shows how to include the driver and how to access the
cards. Please combine this example with the different standard examples to get the different card functionality.

Declaration

The driver access methods and also all the type, register and error declarations are combined in the object Spcm and are located in the DLL
SpcmDrv.NET.dIl delivered with the .NET examples. Spectrum also delivers the source code of the DLL as a C# project. Theses sources are
located in the directory SpemDrv.NET.

namespace Spcm
{
public class Drv

{
[DllImport ("spcm win32.d11") Jpublic static extern IntPtr spcm hOpen (string szDeviceName) ;
[DllImport ("spcm win32.d11l") Jpublic static extern void spcm_vClose (IntPtr hDevice) ;

public class CardType
{

public const int TYP_M2I2020 = unchecked ((int)0x00032020) ;
public const int TYP M2I12021 = unchecked ((int)0x00032021) ;
public const int TYP_M212025 = unchecked ((int)0x00032025) ;

public class Regs
{

public const int SPC_M2CMD = unchecked ((int)100);
public const int M2CMD_CARD RESET = unchecked ((int)0x00000001) ;
public const int M2CMD_CARD_ WRITESETUP = unchecked ((int)0x00000002) ;
o
Using C#

The SpcmDrv.NET.dIl needs to be included within the Solution Explorer in the References section. Please use right mouse and select ,AddRef-
erence”. After this all functions and constants of the driver object are available.

Please see the example in the directory CSharp as a start:

7 ===== open card -----
hDevice = Drv.spcm_hOpen ("/dev/spcm0") ;
if ((int)hDevice == 0)

{
Console.WritelLine ("Error: Could not open card\n");
return 1;

1y ===== get card type -----
dwErrorCode = Drv.spcm dwGetParam 132 (hDevice, Regs.SPC_PCITYP, out l1lCardType);
dwErrorCode = Drv.spcm dwGetParam i32 (hDevice, Regs.SPC_PCISERIALNR, out lSerialNumber) ;

Using Managed C++/CLI

The SpcmDrv.NET.dIl needs to be included within the project options. Please select ,Project” - ,Properties” - ,References” and finally ,Add
new Reference”. After this all functions and constants of the driver object are available.

Please see the example in the directory CppCIR as a start:

1y ===== open card -----
hDevice = Drv::spcm hOpen ("/dev/spcm0") ;
if ((int)hDevice == 0)

{
Console::WriteLine ("Error: Could not open card\n");
return 1;

/] —==== get card type -----
dwErrorCode = Drv::spcm dwGetParam i32 (hDevice, Regs::SPC_PCITYP, 1lCardType);
dwErrorCode = Drv::spcm dwGetParam 132 (hDevice, Regs::SPC_PCISERIALNR, lSerialNumber) ;

44 M2i.20xx / M2i.20xx-exp Manual

Software .NET programming languages

Using VB.NET

The SpcmDrv.NET.dIl needs to be included within the project options. Please select ,Project” - ,Properties” - ,References” and finally ,Add
new Reference”. After this all functions and constants of the driver object are available.

Please see the example in the directory VB.NET as a start:

' open card -----
hDevice = Drv.spcm_hOpen ("/dev/spcm0")

If (hDevice = 0) Then
Console.WriteLine ("Error: Could not open card\n")
Else

S get card type -----
dwError = Drv.spcm_dwGetParam i32 (hDevice, Regs.SPC_PCITYP, 1lCardType)
dwError = Drv.spcm dwGetParam i32 (hDevice, Regs.SPC PCISERIALNR, lSerialNumber)

Using J#
The SpecmDrv.NET.dIl needs to be included within the Solution Explorer in the References section. Please use right mouse and select , AddRef-
erence”. After this all functions and constants of the driver object are available.

Please see the example in the directory JSharp as a start:

1y ===== open card -----
hDevice = Drv.spcm hOpen ("/dev/spcmO") ;

if (hDevice.ToInt32() == 0)
System.out.println("Error: Could not open card\n");
else
{
Jf === get card type -----
dwErrorCode = Drv.spcm dwGetParam i32 (hDevice, Regs.SPC_PCITYP, lCardType);
dwErrorCode = Drv.spcm dwGetParam i32 (hDevice, Regs.SPC_PCISERIALNR, lSerialNumber);

(c) Spectrum GmbH 45

Overview Programming the Board

Programming the Board

Overview

The following chapters show you in detail how to program the different aspects of the board. For every topic there’s a small example. For
the examples we focused on Visual C++. However as shown in the last chapter the differences in programming the board under different
programming languages are marginal. This manual describes the programming of the whole hardware family. Some of the topics are similar
for all board versions. But some differ a little bit from type to type. Please check the given tables for these topics and examine carefully which
settings are valid for your special kind of board.

Register tables

The programming of the boards is totally software register based. All software registers are described in the following form:

The name of the software regis- | | The decimal value of the software register. | [Describes whether Short description of the function-
ter as found in the regs.h file. Also found in the regs.h file. This value must | | the register can be ality of the register. A more de-
Could directly be used by C/ be used with all programs or compilers that [| read (r) and/or writ-| | tailed description is found
C++, Delphi and Basic compiler | [cannot use the header file directly. ten (w). above or below the register ta-
* bles.
Register Value Direction Description
SPC_M2CMD 100 w Command register of the board.
M2CMD_CARD_START 4h Starts the board with the current register settings.
M2CMD_CARD_STOP 20h Stops the board manually.
Any constants that can be used to | | The decimal or hexadecimal value of the Short description of
program the register directly are constant, also found in the regs.h file. Hexa-| | the use of this con-
shown inserted beneath the register | | decimal values are indicated with an ,h” at stant.
table. the end. This value must be used with all
programs or compilers that cannot use the
header file directly.

If no constants are given below the register table, the dedicated register is used as a switch. All such registers
A are activated if written with a “1“ and deactivated if written with a “0”.

Programming examples

In this manual a lot of programming examples are used to give you an impression on how the actual mentioned registers can be set within
your own program. All of the examples are located in a separated coloured box to indicate the example and to make it easier to differ it
from the describing text.

Al of the examples mentioned throughout the manual are written in C/C++ and can be used with any C/C++ compiler for Windows or Linux.

Complete C/C++ Example

#include “../c _header/dlltyp.h”
#include “../c_header/regs.h”
#include “../c_header/spcm_drv.h”

#include <stdio.h>

int main ()

{

drv_handle hDrv; // the handle of the device

int32 1lCardType:; // a place to store card information
hDrv = spcm_hOpen ("/dev/spcmO"); // Opens the board and gets a handle

if (!hDrv) // check whether we can access the card

return -1;

spcm_dwGetParam i32 (hDrv, SPC_PCITYP, &1CardType) ; // simple command, read out of
printf (“Found card M2i.%04x in the system\n”, 1CardType & TYP_VERSIONMASK) ;
spcm_vClose (hDrv);

return 0;

}

46 M2i.20xx / M2i.20xx-exp Manual

Programming the Board Initialization

Initialization

Before using the card it is necessary to open the kernel device to access the hardware. It is only possible to use every device exclusively using
the handle that is obtained when opening the device. Opening the same device twice will only generate an error code. After ending the
driver use the device has to be closed again to allow later re-opening. Open and close of driver is done using the spcm_hOpen and
spcm_vClose function as described in the “Driver Functions” chapter before.

Open/Close Example

drv_handle hDrv; // the handle of the device
hDrv = spcm_hOpen ("/dev/spcm0"); // Opens the board and gets a handle
if (!hDrv) // check whether we can access the card

{
printf “Open failed\n”);
return -1;

}
. do any work with the driver

spcm_vClose (hDrv);
return 0;

Error handling

If one action caused an error in the driver this error and the register and value where it occurs will be saved.

The driver is then locked until the error is read out using the error function spem_dwGetErrorinfo_i32. Any
calls to other functions will just return the error code ERR_LASTERR showing that there is an error to be read
out.

This error locking functionality will prevent the generation of unseen false commands and settings that may lead to totally unexpected behav-
jour. For sure there are only errors locked that result on false commands or settings. Any error code that is generated to report a condition to
the user won't lock the driver. As example the error code ERR_TIMEOUT showing that the a timeout in a wait function has occurred won't
lock the driver and the user can simply react fo this error code without reading the complete error function.

As a benefit from this error locking it is not necessary to check the error return of each function call but just checking the error function once
at the end of all calls to see where an error occurred. The enhanced error function returns a complete error description that will lead to the

call that produces the error.

Example for error checking at end using the error text from the driver:

char szErrorText [ERRORTEXTLEN] ;
spcm_dwSetParam 132 (hDrv, SPC_SAMPLERATE, 1000000); // correct command
spcm_dwSetParam_i32 (hDrv, SPC_MEMSIZE, -345); // faulty command
spcm_dwSetParam 132 (hDrv, SPC POSTTRIGGEr, 1024); // correct command
if (spcm_dwGetErrorInfo_i32 (hDrv, NULL, NULL, szErrorText) != ERR_OK) // check for an error
{
printf (szErrorText); // print the error text
spcm_vClose (hDrv); // close the driver
exit (0); // and leave the program
}

This short program then would generate a printout as:

Error ocurred at register SPC MEMSIZE with value -345: value not allowed

All error codes are described in detail in the appendix. Please refer to this error description and the descrip-
tion of the software register to examine the cause for the error message. A

Any of the parameter of the spcm_dwGetErrorlnfo_i32 function can be used to obtain detailed information on the error. If one is not interested
in parts of this information it is possible to just pass a NULL (zero) to this variable like shown in the example. If one is not interested in the
error fext but wants to install it's own error handler it may be interesting to just read out the error generating register and value.

(c) Spectrum GmbH 47

Gathering information from the card Programming the Board

Example for error checking with own (simple) error handler:

uint32 dwErrorReg;
int32 1lErrorValue;
uint32 dwErrorCode;

spcm_dwSetParam 132 (hDrv, SPC_SAMPLERATE, 1000000); // correct command
spcm_dwSetParam 132 (hDrv, SPC_MEMSIZE, -345); // faulty command
spcm_dwSetParam 132 (hDrv, SPC_POSTTRIGGER, 1024); // correct command
dwErrorCode = spcm dwGetErrorInfo i32 (hDrv, &dwErrorReg, &lErrorValue, NULL);

if (dwErrorCode) // check for an error

{

printf (“Errorcode: %d in register %d at value %d\n”, lErrorCode, dwErrorReg, lErrorValue);
spcm_vClose (hDrv); // close the driver
exit (0); // and leave the program

}

Gathering information from the card

When opening the card the driver library internally reads out a lot of information from the on-board eeprom. The driver also offers additional
information on hardware details. All of this information can be read out and used for programming and documentation. This chapter will
show all general information that is offered by the driver. There is also some more information on certain parts of the card, like clock machine
or trigger machine, that is described in detail in the documentation of that part of the card.

All information can be read out using one of the spcm_dwGetParam functions. Please stick to the “Driver Functions” chapter for more details
on this function.

Card type

The card type information returns the specific card type that is found under this device. When using multiple cards in one system it is highly
recommended to read out this register first to examine the ordering of cards. Please don't rely on the card ordering as this is based on the
BIOS, the bus connections and the operating system.

Register Value Direction Description
SPC_PCITYP 2000 read Type of board as listed in the table below.

One of the following values is returned, when reading this register. Each card has it's own card type constant defined in regs.h. Please note
that when reading the card information as a hex value, the lower word shows the digits of the card name while the upper word is a indication

for the used bus type.

Card type Card type as Value hexad Value decimal Card type Card type as Value hexadec- | Value decimal
defined in imal defined in imal
regs.h regs.h
M2i.2020 TYP_M212020 32020h 204832 M2i.2030 TYP_M212030 32030h 204848
M2i.2021 TYP_M212021 32021h 204833 M2i.2031 TYP_M212031 32031h 204849
M2i.2020-exp TYP_M2I12020EXP | 42020h 270368 M2i.2030-exp TYP_M2I12030EXP | 42030h 270384
M2i.2021-exp TYP_M2I12021EXP | 42021h 270369 M2i.203 1-exp TYP_M2I12031EXP | 42031h 270385

Hardware version

Since all of the M2i boards from Spectrum are modular boards, they consist of one base board and one or two piggy-back frontend modules
and eventually of an extension module like the star-hub. Each of these three kinds of hardware has it's own version register. Normally you
do not need this information but if you have a support question, please provide the revision together with it.

Register Value Direction Description

SPC_PCIVERSION 2010 read Base card version: the upper 16 bit show the hardware (PCB) version, the lower 16 bit show the firm-
ware version.

SPC_PCIMODULEVERSION 2012 read Module version: the upper 16 bit show the hardware (PCB) version, the lower 16 bit show the firm-
ware version.

If your board has a additional piggy-back extension module mounted you can get the hardware version with the following register.

Register Value Direction Description

SPC_PCIEXTVERSION 2011 read Extension module version: the upper 16 bit show the hardware (PCB) version, the lower 16 bit show
the firmware version.

48 M2i.20xx / M2i.20xx-exp Manual

Programming the Board Gathering information from the card

Production date

This register informs you about the production date, which is returned as one 32 bit long word. The upper word is holding the information
about the year, while the lower byte informs about the week of the year.

Register Value Direction Description
SPC_PCIDATE 2020 read Production date: week in bit 31 to 16, year in bit 15t0 0

The following example shows how to read out a date and how to interpret the value:

spcm_deetParam_i32 (hDrv, SPC_PCIDATE, &1ProdDate) ;
printf ("Production: week &d of year &d\n“, (lProdDate >> 16) & Oxffff, 1ProdDate & Oxffff);

Last calibration date

This register informs you about the date of the last factory calibration. When receiving a new card this date is similar to the delivery date
when the production calibration is done. When returning the card to calibration this information is updated. This date is not updated when
just doing an on-board calibration by the user. The date is returned as one 32 bit long word. The upper word is holding the information about
the year, while the lower byte informs about the week of the year.

Register Value Direction Description
SPC_CALIBDATE 2025 read Last calibration date: week in bit 31 to 16, year in bit 15 to O

Serial number

This register holds the information about the serial number of the board. This number is unique and should always be sent together with a
support question. Normally you use this information together with the register SPC_PCITYP to verify that multiple measurements are done with
the exact same board.

Register Value Direction Description
SPC_PCISERIALNO 2030 read Serial number of the board

Maximum possible sampling rate

This register gives you the maximum possible sampling rate the board can run. The information provided here does not consider any restric-
tions in the maximum speed caused by special channel seftings. For detailed information about the correlation between the maximum sam-
pling rate and the number of activated channels please refer to the according chapter.

Register Value Direction Description
SPC_PCISAMPLERATE 2100 read Maximum sampling rate in Hz as a 32 bit integer value

Installed memory

This register returns the size of the installed on-board memory in bytes as a 64 bit integer value. If you want to know the amount of samples
you can store, you must regard the size of one sample of your card. All 8 bit A/D and D/A cards use only one byte per sample, while all

other A/D and D/A cards with 12, 14 and 16 bit resolution use two bytes to store one sample. All digital cards need one byte to store 8

data bits.

Register Value Direction Description

SPC_PCIMEMSIZE 2110 read _i32 Installed memory in bytes as a 32 bit integer value. Maximum return value will 1 GByte. If more mem-
ory is installed this function will return the error code ERR_EXCEEDINT32.

SPC_PCIMEMSIZE 2110 read _i64 Installed memory in bytes as a 64 bit integer value

The following example is written for a ,two bytes” per sample card (12, 14 or 16 bit board), on any 8 bit card memory in MSamples is
similar o memory in MBytes.

spcm_dwGetParam i64 (hDrv, SPC_PCIMEMSIZE, &11InstMemsize) ;
printf ("Memory on card: %$d MBytes\n", (int32) (llInstMemsize /1024/1024));
printf (" : %d MSamples\n", (int32) (llInstMemsize /1024/1024/2));

Installed features and options

The SPC_PCIFEATURES register informs you about the features, that are installed on the board. If you want to know about one option being
installed or not, you need to read out the 32 bit value and mask the interesting bit.

Register Value Direction Description
SPC_PCIFEATURES 2120 read PCl feature register. Holds the installed features and options as a bitfield. The return value must be
masked out with one of the masks below to get information about one certain feature.
SPCM_FEAT_MULTI 1h Is set if the option Multiple Recording / Multiple Replay is installed.
SPCM_FEAT_GATE 2h Is set if the option Gated Sampling / Gated Replay is installed.

(c) Spectrum GmbH 49

Gathering information from the card

Programming the Board

SPCM_FEAT_DIGITAL 4h Is set if the option Digital Inputs / Digital Outputs is installed.

SPCM_FEAT_TIMESTAMP 8h Is set if the option Timestamp is installed.

SPCM_FEAT_STARHUB5 20h Is set on the card, that carries the star-hub piggy-back module for synchronizing up to 5 cards.

SPCM_FEAT_STARHUB16 40h Is set on the card, that carries the star-hub piggy-back module for synchronizing up to 16 cards.

SPCM_FEAT_ABA 80h Is set if the option ABA mode is installed.

SPCM_FEAT_BASEXIO 100h Is set if the extra BaseXIO option is installed. The lines can be used for asynchronous digital I/O, extra trigger or
timestamp reference signal input

SPCM_FEAT_AMPLIFIER_10V 200h Arbitrary Waveform Generators only: card has additional set of calibration values for amplifier card

The following example demonstrates how to read out the information about one feature.

SpcGetParam (hDrv,

SPC_PCIFEATURES,

if (lFeatures & SPCM_FEAT DIGITAL)
printf ("Option digital inputs/outputs is installed on your card");

&lFeatures) ;

Used type of driver

This register holds the information about the driver that is actually used to access the board. Although the driver interface didn’t differ between
Windows and Linux systems it may be of interest for an universal program to know on which platform it is working.

Register Value Direction Description

SPC_GETDRVTYPE 1220 read Gives information about what type of driver is actually used
DRVTYP_LINUX 1 Linux driver is used
DRVTYP_WDM 4 Windows WDM driver is used (only Windows 2000/XP/XP64/Vista).

Driver version

This register holds information about the currently installed driver library. As the drivers are permanently improved and maintained and new
features are added user programs that rely on a new feature are requested to check the driver version whether this feature is installed.

Register

Value

Direction

Description

SPC_GETDRVVERSION

1200

read

Gives information about the driver library version

The resulting 32 bit value for the driver version consists of the three version number parts shown in the table below:

Driver Major Version

Driver Minor Version

Driver Build

8 Bit wide: bit 24 to bit 31

8 Bit wide, bit 16 to bit 23

16 Bit wide, bit O to bit 15

Kernel Driver version

This register informs about the actually used kernel driver. Windows users can also get this information from the device manager. Please refer
to the ,Driver Installation” chapter. On Linux systems this information is also shown in the kernel message log at driver start fime.

Register

Value

Direction

Description

SPC_GETKERNELVERSION

1210

read

Gives information about the kernel driver version.

The resulting 32 bit value for the driver version consists of the three version number parts shown in the table below:

Driver Major Version

Driver Minor Version

Driver Build

8 Bit wide: bit 24 to bit 31

8 Bit wide, bit 16 to bit 23

16 Bit wide, bit O to bit 15

The following example demonstrates how to read out the kernel and library version and how to print them.

SpcGetParam (hDrv,
SpcGetParam (hDrv,

SPC_GETDRVVERSION,

SPC_GETKERNELVERSION,
printf ("Kernel V %d.%d build %d\n”, 1KernelVersion >> 24, (lKernelVersion >> 16) & Oxff, 1lKernelVersion & Oxffff);
printf ("Library V %d.%d build %d\n”,lLibVersion >> 24, (lLibVersion >> 16) & Oxff, lLibVersion & Oxffff);

&1lLibVersion) ;
&1KernelVersion) ;

This small program will generate an output like this:

Kernel V 1.11 build 817
Library V 1.1 build 854

50

M2i.20xx / M2i.20xx-exp Manual

Programming the Board

Reset

Reset

Every Spectrum card can be reset by software. Concerning the hardware, this reset is the same as the power-on reset when starting the host
computer. In addition to the power-on reset, the reset command also brings all internal driver settings to a defined default state. A software
reset is automatically performed, when the driver is first loaded after starting the host system.

It is recommended, that every custom written program performs a software reset first, to be sure that the
driver is in a defined state independent from possible previous setting. A

Performing a board reset can be easily done by the related board command mentioned in the following table.

Register Value Direction Description
SPC_M2CMD 100 w Command register of the board.
M2CMD_CARD_RESET Th A software and hardware reset is done for the board. All seftings are set to the default values. The data in the board’s

on-board memory will be no longer valid. Any output signals like trigger or clock output will be disabled.

(c) Spectrum GmbH 51

Channel Selection Analog Inputs

Analog Inputs

Channel Selection

One key setting that influences all other possible settings is the channel enable register. An unique feature of the Spectrum cards is the pos-
sibility to program the number of channels you want to use. All on-board memory can then be used by these activated channels.

This description shows you the channel enable register for the complete card family. However, your specific board may have less channels
depending on the card type that you have purchased and therefore does not allow you to set the maximum number of channels shown here.

Register Value Direction Description
SPC_CHENABLE 11000 read/write Sets the channel enable information for the next card run.
CHANNELO 1 Activates channel O
CHANNEL1 2 Activates channel 1
CHANNEL2 4 Activates channel 2
CHANNEL3 8 Activates channel 3

The channel enable register is set as a bitmap. That means that one bit of the value corresponds to one channel to be activated. To activate
more than one channel the values have to be combined by a bitwise OR.

Example showing how to activate 4 channels:

spcm_dwSetParam i32 (hDrv, SPC CHENABLE, CHANNELO | CHANNEL1 | CHANNEL2 | CHANNEL3);

The following table shows all allowed settings for the channel enable register when your card has a maximum of 2 channels.

Channels to activate
ChO Chl Values to program Value as hex Value as decimal
X CHANNELO 1h 1
X CHANNEL1 2h 2
X X CHANNELO | CHANNEL1 3h 3

The following table shows all allowed settings for the channel enable register in case that you have a four channel card.

Channels to activate

ChO Ch1 Ch2 Ch3 Values to program Value as hex Value as decimal

X CHANNELO 1h 1
X CHANNEL1 2h 2

X CHANNEL2 4h 4

X CHANNEL3 8h 8

X X CHANNELO | CHANNEL1 3h 3
X X CHANNELO | CHANNEL2 5h 5
X X CHANNELO | CHANNEL3 %h 9
X X CHANNEL1 | CHANNEL2 6h é

X X CHANNEL1 | CHANNEL3 Ah 10

X X CHANNEL2 | CHANNEL3 Ch 12

X X X X CHANNELO | CHANNEL1 | CHANNEL2 | CHANNEL3 Fh 15

Any channel activation mask that is not shown here is not valid. If programming an other channel activation,
A the driver will return with an error code ERR_VALUE.

To help user programs it is also possible to read out the number of activated channels that correspond to the currently programmed bitmap.

Register Value Direction Description
SPC_CHCOUNT 11001 read Reads back the number of currently activated channels.

Reading out the channel enable information can be done directly after setting it or later like this:

spcm_dwSetParam 132 (hDrv, SPC_CHENABLE, CHANNELO | CHANNEL2);
spcm_dwGetParam i32 (hDrv, SPC CHENABLE, &lActivatedChannels);
spcm_dwGetParam i32 (hDrv, SPC_CHCOUNT, &lChCount);

printf ("Activated channels bitmask is: 0x%$08x\n", lActivatedChannels);
printf ("Number of activated channels with this bitmask: %d\n", 1ChCount);

Assuming that the two channels are available on your card the program will have the following output:

Activated channels bitmask is: 0x00000005
Number of activated channels with this bitmask: 2

52 M2i.20xx / M2i.20xx-exp Manual

Analog Inputs Setting up the inputs

Important note on channels selection

channel settings throughout this handbook are described for the maximum number of possible channels that
are available on one card of the actual series. There can be less channels on your actual type of board or
bus-system. Please refer to the table(s) above to get the actual number of available channels.

As some of the manuals passages are used in more than one hardware manual most of the registers and f

Setting up the inputs

Input ranges

This analog acquisition board uses separate input amplifiers and converters on each channel. This gives you the possibility to set up the de-
sired and concerning your application best suiting input range also separately for each channel. The input ranges can easily be set by the
corresponding input registers. The table below shows the available input registers and possible standard ranges for your type of board. As
there are also modified version availble with different input ranges it is recommended to read out the currently available input ranges as
shown later in this chapter.

Register Value Direction Description

SPC_AMPO 30010 r/w Defines the input range of channelO.

SPC_AMP1 30110 r/w Defines the input range of channell.

SPC_AMP2 30210 r/w Defines the input range of channel2.

SPC_AMP3 30310 r/w Defines the input range of channel3.
50 + 50 mV calibrated input range for the appropriate channel.
100 + 100 mV calibrated input range for the appropriate channel.
200 + 200 mV calibrated input range for the appropriate channel.
500 + 500 mV calibrated input range for the appropriate channel.
1000 + 1V calibrated input range for the appropriate channel.
2000 + 2 V calibrated input range for the appropriate channel.
5000 + 5V calibrated input range for the appropriate channel.

Universal software that handles different card types can read out how many different input ranges are available on the actual board for each
channel. This information can be obtained by using the read-only register shown in the table below.

Register Value Direction Description
SPC_READIRCOUNT 3000 read Informs about the number of the board’s calibrated input ranges.

Additionally one can read out the minimum and the maximum value of each input range as shown in the table below. The number of input
ranges is read out with the above shown register.

Register Value Direction Description

SPC_READRANGEMINO 4000 read Gives back the minimum value of input range 0 in mV.

SPC_READRANGEMINT 4001 read Gives back the minimum value of input range 1 in mV.

SPC_READRANGEMIN2 4002 read Gives back the minimum value of input range 2 in mV.
read

SPC_READRANGEMAXO 4100 read Gives back the maximum value of input range O in mV.

SPC_READRANGEMAX1 4101 read Gives back the maximum value of input range 1 in mV.

SPC_READRANGEMAX2 4102 read Gives back the maximum value of input range 2 in mV.
r

The following example reads out the number of available input ranges and reads and prints the minimum and maximum value of all input
ranges.

spcm_dwGetParam i32 (hDrv, READIRCOUNT, &1NumberOfRanges) ;

for (i = 0; i < 1lNumberOfRanges; i++)
{
spcm_dwGetParam i32 (hDrv, SPC_READRANGEMINO + i, &lMinimumInputRage);
spcm_dwGetParam i32 (hDrv, SPC_READRANGEMAXO + i, &lMaximumInputRange) ;
printf (,Range %d: %d mV to %d mv\n“, i, 1MinimumInputRange, lMaximumInputRange) ;
}

(c) Spectrum GmbH 53

Sefting up the inputs

Analog Inputs

Input offset

In most cases the external signals will not be symmetrically re- input
lated to ground. If you want to acquire such asymmetrical sig- 3i9n0|
nals, it is possible to use the smallest input range that matches zov

the biggest absolute signal amplitude without exceeding the

range.

The figure at the right shows this possibility. But in this exam- ‘

ple you would leave half of the possible resolution unused.

It is much more efficient if you shift the signal on-board to be
as symmetrical as possible and to acquire it within the best

possible range.

used

| IR+2V

input used

[A

Input

» ‘ range

05V —-—— - - _

signal | R+1V

Input

range

This results in a much better use of the converters resolution.

On all acquisition boards from Spectrum you have the possi- 5y

bility to adjust the input offset separately for each channel.

The example in the right figure shows signals with a
range of 1.0 V that have offsets up to 1.0 V. So relat-
ed to the desired input range these signals have offsets

of £100 %.

For compensating such offsets you can use the offset reg-
ister for each channel separately. If you want to compen-
sate the +100 % offset of the outer left signal, you would
have to set the offset to -100 % to compensate it.

As the offset levels are relatively to the related input
range, you have fo calculate and set your offset again
when changing the input's range.

The table below shows the offset registers and the possi-
ble offset ranges for your specific type of board.

20v

14Y =q====- et

Input

range

+100% ' +50% 0%

-100 % -50 % 0%

) o, ignal
50% ' -100% S

Driver

+50% +100% oo

Register Value Direction Description Offset range

SPC_OFFSO 30000 r/w Defines the input's offset and therfore shifts the input of channelO. + 400 % in steps of 1 %
SPC_OFFS1 30100 r/w Defines the input's offset and therfore shifts the input of channell. + 400 % in steps of 1 %
SPC_OFFS2 30200 r/w Defines the input's offset and therfore shifts the input of channel2. + 400 % in steps of 1 %
SPC_OFFS3 30300 r/w Defines the input's offset and therfore shifts the input of channel3. + 400 % in steps of 1 %

When writing a program that should run with different board families it is useful to just read-out the possible offset than can be programmed.
You can use the following read only register to get the possible programmable offset range in percent

Register Value Direction Description

SPC_READOFFSMINO 4200 read Minimum programmable offset for input range O in percent
SPC_READOFFSMAXO 4100 read Maximum programmable offset for input range O in percent
SPC_READOFFSMINO 4201 read Minimum programmable offset for input range 1 in percent
SPC_READOFFSMAXO 4101 read Maximum programmable offset for input range 1 in percent

To give you an example how the registers of the input range and the input offset are to be used, the following example shows a setup to
match all of the four signals in the second input offset figure to match the desired input range. Therefore every one of the four channels is set

54 M2i.20xx / M2i.20xx-exp Manual

Analog Inputs Setting up the inputs

to the input range of + 1.0 V. After that the four offset seftings are set exactly as the offsets to be compensated, but with the opposite sign.
The result is, that all four channels match perfectly to the chosen input range.

spcm_dwSetParam_i32 (hDrv, SPC_AMPO , 1000); // Set up channelO to the range of £+ 1.0 V
spcm_dwSetParam i32 (hDrv, SPC_AMP1 , 1000); // Set up channell to the range of + 1.0 V

spcm dwSetParam i32 (hDrv, SPC AMP2 , 1000); // Set up channel2 to the range of £+ 1.0 V
spcm_dwSetParam_i32 (hDrv, SPC_AMP3 , 1000); // Set up channel3 to the range of £+ 1.0 V
spcm_dwSetParam i32 (hDrv, SPC_OFFSO, -100); // Set the input offset to get the signal symmetrically to 0.0 V
spcm_dwSetParam i32 (hDrv, SPC_OFFS1, —50) ;

spcm_deetParam_i32 (hDrv, SPC_OFFS2, 50) ;

spcm_dwSetParam i32 (hDrv, SPC OFFS3, 100) ;

Input termination

All inputs of Spectrum’s analog boards can be terminated separately with 50 Ohm by software programming. If you do so, please make sure
that your signal source is able to deliver the higher output currents. If no termination is used, the inputs have an impedance of 1 Megaohm.
The following table shows the corresponding register to set the input termination.

Register Value Direction Description

SPC_500HMO 30030 read/write A 1" sets the 50 ohm termination for channelO. A ,0” sets the termination to1l MOhm.
SPC_500HM1 30130 read/write A 1" sets the 50 ohm termination for channell. A ,0” sets the termination to1l MOhm.
SPC_500HM?2 30230 read/write A 1" sets the 50 ohm termination for channel2. A ,0” sets the termination tol MOhm.
SPC_500HM3 30330 read/write A 1" sets the 50 ohm termination for channel3. A ,0” sets the termination to1l MOhm.

Automatic adjustment of the offset settings

All of the channels are calibrated in factory before the board is shipped. These settings are stored in the on-board EEProm under the default
settings. If you have asymmetrical signals, you can adjust the offset easily with the corresponding registers of the inputs as shown before.

To start the automatic offset adjustment, simply write the register, mentioned in the following table.
Before you start an automatic offset adjustment make sure, that no signal is connected to any input. Leave

all the input connectors open and then start the adjustment. All the internal settings of the driver are changed,
while the automatic offset compensation is in progress.

Register Value Direction Description
SPC_ADJ_AUTOAD) 50020 write Performs the automatic offset compensation in the driver either for all input ranges or only the actual.
I ADJ_ALL 0 Automatic offset adjustment for all input ranges.

As all settings are temporarily stored in the driver, the automatic adjustment will only affect these values. After exiting your program, all cal-
ibration information will be lost. To give you a possibility to save your own settings, most Spectrum card has at minimum one set of user
seftings that can be saved within the on-board EEPROM. The default settings of the offset and gain values are then read-only and cannot be
written to the EEPROM by the user. If the card has no user settings the default settings may be overwritten.

You can easily either save adjustment settings to the EEPROM with SPC_ADJ_SAVE or recall them with SPC_ADJ_LOAD. These two registers
are shown in the table below. The values for these EEPROM access registers are the sets that can be stored within the EEPROM. The amount
of sets available for storing user offset settings depends on the type of board you use. The table below shows all the EEPROM sets, that are
available for your board.

Register Value Direction Description
SPC_ADJ_LOAD 50000 write Loads the specified set of seftings from the EEPROM. The default settings are automatically loaded,
when the driver is started.
read Reads out, what kind of settings have been loaded last.
SPC_ADJ_SAVE 50010 write Stores the actual seftings to the specified set in the EEPROM. T
read Reads out, what kind of settings have been saved last.
ADJ_DEFAULT 0 Default settings can be loaded only. These settings cannot be saved by the user.
ADJ_USERO 1 User settings O. This is a valid set for storing user offset settings to.

If you want to make an offset adjustment on all the channels and store the data to the ADJ_USERO set of the EEPROM you can do this the
way, the following example shows.

spcm_dwSetParam i32 (hDrv, SPC_ADJ_AUTOADJ, ADJ ALL)

_ // Activate offset adjustment on all channels
spcm_deetParam_i32 (hDrv, SPC_ADJ_SAVE, ADJ_USERO)

// and store values to USERO set in the EEPROM

’
;

(c) Spectrum GmbH 55

Sefting up the inputs Analog Inputs

If teh card has no user settings one can store to the default seftings as shown here:

spcm_dwSetParam i32 (hDrv, SPC_ADJ_AUTOADJ, ADJ_ALL); // Activate offset adjustment on all channels
spcm_dwSetParam i32 (hDrv, SPC_ADJ SAVE, ADJ DEFAULT); // and store values to default set in the EEPROM

When working with a user setting instead of the default ones, you need to restore your user settings with the help of the SPC_ADJ_LOAD
register as the following example shows.

spcm_dwSetParam i32 (hDrv, SPC_ADJ_LOAD, ADJ_USERO) ; // and load values to USERO set in the EEPROM

56 M2i.20xx / M2i.20xx-exp Manual

Acquisition modes Overview

Acquisition modes

Your card is able to run in different modes. Depending on the selected mode there are different registers that each define an aspect of this
mode. The single modes are explained in this chapter. Any further modes that are only available if an option is installed on the card is doc-
umented in a later chapter.

Overview

This chapter gives you a general overview on the related registers for the different modes. The use of these registers throughout the different
modes is described in the following chapters.

Setup of the mode

The mode register is organized as a bitmap. Each mode corresponds to one bit of this bitmap. If defining the mode to use please be sure just
to set one of the bits. All other settings will return an error code.

The main difference between all standard and all FIFO modes is that the standard modes are limited to on-board memory and therefore can
run with full sampling rate. The FIFO modes are designed to transfer data continuously over the bus to PC memory or to hard disk and can
therefore run much longer. The FIFO modes are limited by the maximum bus transfer speed the PC can use. The FIFO mode uses the complete
installed on-board memory as a FIFO buffer.

However as you'll see throughout the detailed documentation of the modes the standard and the FIFO mode are similar in programming and
behaviour and there are only a very few differences between them.

Register Value Direction Description
SPC_CARDMODE 9500 read/write Defines the used operating mode, a read command will return the currently used mode.
SPC_AVAILCARDMODES 9501 read Returns a bitmap with all available modes on your card. The modes are listed below.

Acquisition modes
SPC_REC_STD_SINGLE Th Data acquisition to on-board memory for one single trigger event.

SPC_REC_STD_MuULTI 2h Data acquisition to on-board memory for multiple trigger events. Each recorded segment has the same size. Only
available if option Multiple Recording is installed. this mode is described in greater detail in a special chapter about
the Multiple Recording option.

SPC_REC_STD_GATE 4h Data acquisition to on-board memory using an external Gate signal. Acquisition is only done as long as the gate sig-
nal has a programmed level. This mode is only available if the Gated Sampling option is installed. The mode is
described in greater detail in a special chapter about the Gated Sampling option.

SPC_REC_STD_ABA 8h Data acquisition to on-board memory for multiple trigger events. While the multiple trigger events are stored with pro-
grammed sampling rate the inputs are sampled continuously with a slower sampling speed. This mode is only avail-
able if the ABA mode option is installed. The mode is described in a special chapter about ABA mode option.

SPC_REC_FIFO_SINGLE 10h Continuous data acquisition for one single trigger event. The on-board memory is used completely as FIFO buffer.
SPC_REC_FIFO_MUILTI 20h Continuous data acquisition for multiple trigger events. Only available if Multiple Recording option is installed.
SPC_REC_FIFO_GATE 40h Continuous data acquisition using an external gate signal. only available if Gated Sampling option is installed.
SPC_REC_FIFO_ABA 80h Continuous data acquisition for multiple trigger events together with continuous data acquisition with a slower sam-

pling clock. Only available if ABA mode option is installed

Commands

The data acquisition/data replay is controlled by the command register. The command register controls the state of the card in general and
also the state of the different data transfers. Data transfers are explained in an extra chapter later on.

The commands are splitted info two types of commands: execution commands that fulfil a job and wait commands that will wait for the oc-
currence of an inferrupt. Again the commands register is organized as a bitmap allowing you to set several commands together with one
call. As not all of the command combinations make sense (like the combination of reset and start at the same time) the driver will check the
given command and return an error code ERR_SEQUENCE if the given commands is not allowed in the current state.

Register Value Direction Description

SPC_M2CMD 100 write only Executes a command for the card or data transfer

(c) Spectrum GmbH 57

Commands Acquisition modes

Card execution commands

M2CMD_CARD_RESET 1h Performs a hard and software reset of the card as explained further above

M2CMD_CARD_WRITESETUP 2h Writes the current setup to the card without starting the hardware. This command may be useful if changing some
internal settings like clock frequency and enabling outputs.

M2CMD_CARD_START 4h Starts the card with all selected settings. This command automatically writes all settings to the card if any of the set-
tings has been changed since the last one was written. After card has been started none of the settings can be
changed while the card is running.

M2CMD_CARD_ENABLETRIGGER | 8h The trigger detection is enabled. This command can be either send together with the start command to enable trigger
immediately or in a second call after some external hardware has been started.

M2CMD_CARD_FORCETRIGGER 10h This command forces a trigger even if none has been detected so far. Sending this command together with the start
command is similar to using the software trigger.

M2CMD_CARD_DISABLETRIGGER | 20h The trigger detection is disabled. All further trigger events are ignored until the trigger detection is again enabled.
When starting the card the trigger detection is started disabled.

M2CMD_CARD_STOP 40h Stops the current run of the card. If the card is not running this command has no effect.

M2CMD_CARD_FLUSHFIFO 80h Used to flush input FIFOs after the card has been stopped while an acquisition was running.

Card wait commands

These commands do not return until either the defined state has been reached what is signalled by an interrupt from the card or the timeout
counter has expired. If the state has been reached the command returns with an ERR_OK. If a timeout occurs the command returns with
ERR_TIMEQUT. If the card has been stopped from a second thread with a stop or reset command, the wait function returns with ERR_ABORT.

M2CMD_CARD_WAITPREFULL 1000h Acquisition modes only: the command waits until the pretrigger area has once been filled with data. After pretrigger
area has been filled the internal trigger engine starts to look for trigger events if the trigger detection has been

enabled.

M2CMD_CARD_WAITTRIGGER 2000h Waits until the first trigger event has been detected by the card. If using a mode with multiple trigger events like Multi-
ple Recording or Gated Sampling there only the first trigger detection will generate an interrupt for this wait com-
mand.

M2CMD_CARD_WAITREADY 4000h Waits until the card has completed the current run. In an acquisition mode receiving this command means that all data
has been acquired. In a generation mode receiving this command means that the output has stopped.

Wait command timeout

If the state for which one of the wait commands is waiting isn’t reached any of the wait commands will either wait forever if no timeout is
defined or it will return automatically with an ERR_TIMEQUIT if the specified timeout has expired.

Register Value Direction Description

SPC_TIMEOUT 295130 read/write Defines the timeout for any following wait command in a milli second resolution. Writing a zero to
this register disables the timeout.

As a default the timeout is disabled. After defining a timeout this is valid for all following wait command until the timeout is again disabled
by writing a zero to this register.

A timeout occuring should not be considered as an error. It did not change anything on the board status. The board is still running and will
complete normally. You may use the timeout to abort the run after a certain time if no trigger has occurred. In that case a stop command is
necessary affer receiving the timeout. It is also possible to use the timeout to update the user interface frequently and simply call the wait
function afterwards again.

Example for card control:

// card is started and trigger detection is enabled immediately
spcm_dwSetParam i32 (hDrv, SPC_M2CMD, M2CMD_CARD_START | M2CMD_CARD_ENABLETRIGGER) ;

// we wait a maximum of 1 second for a trigger detection. In case of timeout we force the trigger
spcm_deetParam_i32 (hDrv, SPC_TIMEOUT, 1000);
if (spcm_dwSetParam 132 (hDrv, SPC_M2CMD, M2CMD CARD WAITTRIGGER) == ERR_ TIMEOUT)

{

printf (“No trigger detected so far, we force a trigger now!\n”);

spcm_dwSetParam (hdrv, SPC_M2CMD, M2CMD_CARD_FORCETRIGGER) ;

}

// we disable the timeout and wait for the end of the run
spcm_dwSetParam i32 (hDrv, SPC TIMEOUT, O0);
spcm_deetParam_i32 (hDrv, SPC_M2CMD, M2CMD_CARD WAITREADY) ;
printf (“Card has stopped now!\n”);

Card Status

In addition to the wait for an interrupt mechanism or completely instead of it one needs also to read out the current card status by reading
the SPC_M2STATUS register. The status register is organized as a bitmap showing the status of the card and also of the different data trans-
fers.

Register Value Direction Description

SPC_M2STATUS 110 read only Reads out the current status information
M2STAT_CARD_PRETRIGGER 1h Acquisition modes only: the pretrigger area has been filled.
M2STAT_CARD_TRIGGER 2h The first trigger has been detected.
M2STAT_CARD_READY 4h The card has finished it's run and is ready.

58 M2i.20xx / M2i.20xx-exp Manual

Acquisition modes Commands

Acquisition cards status overview

The following drawing gives you an overview of the card commands and card status information. After start of card with
M2CMD_CARD_START the card is acquiring pretrigger data until one time complete pretrigger data has been acquired. Then the status
M2STAT_CARD_PRETRIGGER is set. Either the trigger has been enabled together with the start command or the card now waits for trigger
enable command M2CMD_CARD_ENABLETRIGGER. After receiving this command the trigger engine is enabled and card checks for a trig-
ger event. As soon as the trigger event is received the status changes to M2STAT_CARD_TRIGGER and the card acquires the programmed
posttrigger data. After all post trigger data has been acquired the status changes to M2STAT_CARD_READY and data can be read out:

| | |

Trigger
Acquiring iting fo Waitis Acquiri
sequiivon | roviggardota | miggeonable | for s =
“‘E Pretrigger @ \ i Pretrigger Posttrigger
E :‘{ Memsize o >
=1 H 5
: : :
[=]
5 § 3 5
Y Y

Generation card status overview

This drawing gives an overview of the card commands and status information for a simple generation mode. After start of card with the
M2CMD_CARD_START the card is armed and waiting. Either the trigger has been enabled together with the start command or the card now
waits for trigger enable command M2CMD_CARD_ENABLETRIGGER. After receiving this command the trigger engine is enabled and card
checks for a trigger event. As soon as the trigger event is received the status changes to M2STAT_CARD_TRIGGER and the card starts with
the data replay. After replay has been finished - depending on the programmed mode - the status changes to M2STAT_CARD_READY and

the card stops.

riggr — |

. Waiting for Waiti Replaying
Genoration trigger enable for I.'rr"lgggﬂr Memsize data
B S Tr—
A 0‘ \ Memsize
g g .
E 8 2
g E &
3 5 5
Y Y

Data Transfer

Data transfer consists of two parts: the buffer definition and the commands/status information that controls the transfer itself. Data transfer
shares the command and status register with the card control commands and status information. In general the following details on the data
transfer are valid for any data transfer in any direction:

e Before starting a data transfer the buffer must be defined using the spcm_dwDefTransfer function
e Each defined buffer is only used once. After transfer has ended the buffer is automatically invalidated
e If a buffer has to be deleted although the data transfer is in progress or the buffer has at least been defined it is necessary to call the

spcm_vinvalidateBuf function.

Definition of the transfer buffer
Before any data transfer can start it is necessary to define the transfer buffer with all it's details. The definition of the buffer is done with the
spcm_dwDefTransfer function as explained in an earlier chapter.

uint32 stdcall spcm dwDefTransfer i64 (// Defines the transfer buffer by using 64 bit unsigned integer values
drv_handle hDevice, // handle to an already opened device
uint32 dwBufType, // type of the buffer to define as listed below under SPCM BUF XXXX
uint32 dwDirection, // the transfer direction as defined below
uint32 dwNotifySize, // number of bytes after which an event is sent (0=end of transfer)
void* pvDataBuffer, // pointer to the data buffer
uint64 qwBrdOffs, // offset for transfer in board memory
uint64 gwTransferlen) ; // buffer length

This function is used to define buffers for standard sample data transfer as well as for extra data transfer for additional ABA or timestamp
information. Therefore the dwBufType parameter can be one of the following:

I SPCM_BUF_DATA | 1000 | Buffer is used for transfer of standard sample data I

(c) Spectrum GmbH 59

Commands Acquisition modes

SPCM_BUF_ABA 2000 Buffer is used to read out slow ABA data. Details on this mode are described in the chapter about the ABA mode
option

SPCM_BUF_TIMESTAMP 3000 Buffer is used to read out timestamp information. Details on this mode are described in the chapter about the
timestamp option.

The dwDirection parameter defines the direction of the following data transfer:

SPCM_DIR_PCTOCARD 0 Transfer is done from PC memory to on-board memory of card
SPCM_DIR_CARDTOPC 1 Transfer is done from card on-board memory to PC memory.

The direction information used here must match the currently used mode. While an acquisition mode is used
there’s no transfer from PC to card allowed and vice versa. It is possible to use a special memory test mode
to come beyond this limit. Set the SPC_MEMTEST register as defined further below.

The dwNotifySize parameter defines the amount of bytes after which an interrupt should be generated. If leaving this parameter zero, the
transfer will run until all data is transferred and then generate an interrupt. Filling in notify size > zero will allow you to use the amount of
data that has been transferred so far. The notify size is used on FIFO mode to implement a buffer handshake with the driver or when trans-
ferring large amount of data where it may be of interest fo start data processing while data transfer is still running. Please see the chapter on
handling positions further below for details.

The Notify size sticks to the page size which is defined by the PC hardware and the operating system. There-

fore the notify size must be a multiple of 4 kByte. For data transfer it may also be a fraction of 4k in the

range of 16, 32, 64, 128, 256, 512, 1k or 2k. No other values are allowed. For ABA and timestamp the notify
size can be 2k as a minimum. If you need to work with ABA or timestamp data in smaller chunks please use the
polling mode as described later.

The pvDataBuffer must point to an allocated data buffer for the transfer. Please be sure to have at least the amount of memory allocated that
you program to be transferred. If the transfer is going from card to PC this data is overwritten with the current content of the card on-board
memory.

When not doing FIFO mode one can also use the qwBrdOffs parameter. This parameter defines the starting position for the data transfer as
byte value in relation to the beginning of the card memory. Using this parameter allows it to split up data transfer in smaller chunks if one
has acquired a very large on-board memory.

The gwTransferlen parameter defines the number of bytes that has to be transferred with this buffer. Please be sure that the allocated memory
has at least the size that is defined in this parameter. In standard mode this parameter cannot be larger than the amount of data defined with
memory size.

Memory test mode

In some cases it might be of interest to transfer data in the opposite direction. Therefore a special memory test mode is available which allows
random read and write access of the complete on-board memory. While memory fest mode is activated no normal card commands are pro-
cessed:

Register Value Direction Description

SPC_MEMTEST 200700 read/write Writing a 1 activates the memory test mode, no commands are then processed.
Writing a O deactivates the memory test mode again.

Invalidation of the transfer buffer

The command can be used to invalidate an already defined buffer if the buffer is about to be deleted by user. This function is automatically
called if a new buffer is defined or if the transfer of a buffer has completed

uint32 _stdcall spcm dwInvalidateBuf (// invalidate the transfer buffer
drv_handle hDevice, // handle to an already opened device
uint32 dwBufType) ; // type of the buffer to invalidate as listed above under SPCM BUF XXXX

The dwBufType parameter need to be the same parameter for which the buffer has been defined:

SPCM_BUF_DATA 1000 Buffer is used for transfer of standard sample data

SPCM_BUF_ABA 2000 Buffer is used to read out slow ABA data. Details on this mode are described in the chapter about the ABA mode
option. The ABA mode is only available on analog acquisition cards.

SPCM_BUF_TIMESTAMP 3000 Buffer is used to read out timestamp information. Details on this mode are described in the chapter about the times-
tamp option. The timestamp mode is only available on analog or digital acquisition cards.

Commands and Status information for data transfer buffers.

As explained above the data transfer is performed with the same command and status registers like the card control. It is possible to send
commands for card control and data transfer at the same time as shown in the examples further below.

Register Value Direction Description
SPC_M2CMD 100 write only Executes a command for the card or data transfer
M2CMD_DATA_STARTDMA 10000h Starts the DMA transfer for an already defined buffer. In acquisition mode it may be that the card hasn't received a
trigger yet, in that case the transfer start is delayed until the card receives the trigger event

60 M2i.20xx / M2i.20xx-exp Manual

Acquisition modes Standard Single acquisition mode

M2CMD_DATA_WAITDMA 20000h Waits until the data transfer has ended or until at least the amount of bytes defined by notify size are available. This
wait function also takes the timeout parameter described above into account.
M2CMD_DATA_STOPDMA 40000h Stops a running DMA transfer. Data is invalid afterwards.

The data transfer can generate one of the following status information:

Register Value Direction Description
SPC_M2STATUS 110 read only Reads out the current status information
M2STAT_DATA_BLOCKREADY 100h The next data block as defined in the notify size is available. It is at least the amount of data available but it also can
be more data.
M2STAT_DATA_END 200h The data transfer has completed. This status information will only occur if the notify size is set to zero.
M2STAT_DATA_OVERRUN 400h The data transfer had on overrun (acquisition) or underrun (replay) while doing FIFO transfer.
M2STAT_DATA_ERROR 800h An internal error occurred while doing data transfer.

Example of data transfer

void* pvData = (void*) new int8[1024];

// transfer data from PC memory to card memory
spcm_dwDefTransfer 164 (hDrv, SPCM_BUF_DATA, SPCM_DIR_PCTOCARD , O, pvData, 0, 1024);
SpcmideetParamii:%Z (hDrv, SPC7M2CMD, M2CMD7DATA7$TARTDMA | MZCMDiDATAiYNAITDMA);

// transfer the same data back to PC memory
spcm_dwDefTransfer i64 (hDrv, SPCM_BUF_DATA, SPCM_DIR_CARDTOPC , O, pvData, O, 1024);
spcm_dwSetParam 132 (hDrv, SPC_M2CMD, M2CMD DATA STARTDMA | M2CMD DATA WAITDMA) ;

To keep the example simple it does no error checking. Please be sure to check for errors if using these command in real world programs!

Standard Single acquisition mode

The standard single mode is the easiest and mostly used mode to acquire analog data with a Spectrum acquisition card. In standard single
recording mode the card is working totally independent from the PC, after the card setup is done. The advantage of the Spectrum boards is
that regardless to the system usage the card will sample with equidistant time intervals.

The sampled and converted data is stored in the on-board memory and is held there for being read out after the acquisition. This mode allows
sampling at very high conversion rates without the need to transfer the data info the memory of the host system at high speed.

After the recording is done, the data can be read out by the user and is transferred via the bus into PC memory.

This standard recording mode is the most common mode for all an-

alog and digital acquisition and oscilloscope boards. The data is Trigger

written to a programmed amount of the on-board memory (mem-

size). That part of memory is used as a ring buffer, and recording ““——————“—/‘—/——_—\L —————— eoe
is done continuously until a trigger event is detected. After the trig- S T A v S~~~ iuuﬁ — s
ger event, a certain programmable amount of data is recorded I B

(post trigger) and then the recording finishes. Due to the continuous- ""Prelrigge: - Poshrigger=

ly ring buffer recording, there are also samples prior to the trigger- “ -

/ . Memsize
event in the memory (prefrigger).

detection is not armed. If you use a huge pre trigger size and a slow sample rate it can take up some time

When the card is started the pre trigger area is filled up with data first. While doing this the board’s trigger f
after starting the board before a trigger event will be detected.

Card mode
The card mode has to be set to the correct mode SPC_REC_STD_SINGLE.

Register Value Direction Description
SPC_CARDMODE 9500 read/write Defines the used operating mode, a read command will return the currently used mode.
I SPC_REC_STD_SINGLE Th Data acquisition to on-board memory for one single trigger event.

Memory, Pre- and Posttrigger

At first you have to define, how many samples are to be recorded at all and how many of them should be acquired after the triggerevent has
been detected.

Register Value Direction Description
SPC_MEMSIZE 10000 read/write Sets the memory size in samples per channel.
SPC_POSTTRIGGER 10100 read/write Sets the number of samples to be recorded after the trigger event has been detected.

(c) Spectrum GmbH 61

FIFO Single acquisition mode Acquisition modes

You can access these settings by the registers SPC_MEMSIZE, which sets the total amount of data that is recorded, and the register
SPC_POSTTRIGGER, that defines the number of samples to be recorded after the triggerevent has been detected. The size of the pretrigger
results on the simple formula:

pretrigger = memsize - posttrigger

The maximum memsize that can be use for recording is of course limited by the installed amount of memory and by the number of channels
to be recorded. Please have a look at the topic "Limits of pre, post memsize, loops" later in this chapter.

Example

The following example shows a simple standard single mode data acquisition setup with the read out of data afterwards. To keep this example
simple there is no error checking implemented.

int32 1Memsize = 16384; // recording length is set to 16 kSamples
spcm_dwSetParam_i32 (hDrv, SPC_CHENABLE, CHANNELO) ; // only one channel activated
spcm_dwSetParam i32 (hDrv, SPC_CARDMODE, SPC REC STD SINGLE) ; // set the standard single recording mode
spcm_dwSetParam i32 (hDrv, SPC_MEMSIZE, lMemsize); // recording length
spcm_dwSetParam_i32 (hDrv, SPC_POSTTRIGGER, 8192); // samples to acquire after trigger = 8k

// now we start the acquisition and wait for the interrupt that signalizes the end
spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_CARD START | M2CMD_CARD ENABLETRIGGER | M2CMD CARD WAITREADY) ;

void* pvData = (void*) new int8[lMemsize];
// read out the data

spcm_dwDefTransfer i64 (hDrv, SPCM BUF_DATA, SPCM DIR_CARDTOPC , 0, pvData, 0, lMemsize);
spcm_dwSetParam 132 (hDrv, SPC_M2CMD, M2CMD DATA STARTDMA | M2CMD_DATA WAITDMA) ;

FIFO Single acquisition mode

The FIFO single mode does a continuous data acquisition using the on-board memory as a FIFO buffer and transferring data continuously to
PC memory. One can make on-line calculations with the acquired data, store the data continuously to disk for later use or even have a data
logger functionality with on-line data display.

Card mode
The card mode has to be set to the correct mode SPC_REC_FIFO_SINGLE.

Register Value Direction Description
SPC_CARDMODE 9500 read/write Defines the used operating mode, a read command will return the currently used mode.
I SPC_REC_FIFO_SINGLE 10h Continuous data acquisition to PC memory. Complete on-board memory is used as FIFO buffer.

Length and Pretrigger

Even in FIFO mode it is possible to program a pretrigger area. In general FIFO mode can run forever until it is stopped by an explicit user
command or one can program the total length of the transfer by two counters Loop and Segment size

Register Value Direction Description

SPC_PRETRIGGER 10030 read/write Programs the number of samples to be acquired before the trigger event detection

SPC_SEGMENTSIZE 10010 read/write Length of segments to acquire.

SPC_LOOPS 10020 read/write Number of segments to acquire in fotal. If set to zero the FIFO mode will run continuously until it is
stopped by the user.

The total amount of samples per channel that is acquired can be calculated by [SPC_LOOPS * SPC_SEGMENTSIZE]. Please stick to the below
mentioned limitations of the registers.

Difference to standard single acquisition mode

The standard modes and the FIFO modes differ not very much from the programming side. In fact one can even use the FIFO mode to get the
same behaviour like the standard mode. The buffer handling that is shown in the next chapter is the same for both modes.

Pretrigger
When doing standard single acquisition memory is used as a circular buffer and the pre trigger can be up to the [installed memory] - [minimum
post trigger]. Compared to this the pre trigger in FIFO mode is limited by a special pre trigger FIFO and can only be much less.

Length of acquisition.
In standard mode the acquisition length is defined before the start and is limited to the installed on-board memory whilst in FIFO mode the
acquisition length can either be defined or it can run continuously until user stops it.

62 M2i.20xx / M2i.20xx-exp Manual

Acquisition modes Example

Example

The following example shows a simple standard single mode data acquisition setup with the read out of data afterwards. To keep this example
simple there is no error checking implemented.

spcm_dwSetParam i32 (hDrv, SPC_CHENABLE, CHANNELO) ; // only one channel activated
spcm_dwSetParam_i32 (hDrv, SPC_CARDMODE, SPC_REC_FIFO_SINGLE) ; // set the FIFO single recording mode
spcm_dwSetParam i32 (hDrv, SPC_PRETRIGGER, 1024); // 1 kSample of data before trigger

// in FIFO mode we need to define the buffer before starting the transfer
int8* pbyData = new int8[lBufsizeInSamples];
spcm_dwDefTransfer i64 (hDrv, SPCM_BUF_DATA, SPCM_DIR_CARDTOPC, 4096, (void*) pbyData, 0, lBufsizelInSamples);

// now we start the acquisition and wait for the first block
dwError = spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_CARD_ START |M2CMD_CARD ENABLETRIGGER|M2CMD_ DATA WAITDMA) ;

// we acquire data in a loop. As we defined a notify size of 4k we’ll get the data in >=4k chuncks
dwTotalBytes = 0;
while (!dwError)

{

// read out the available bytes

spcm_dwGetParam_ i32 (hDrv, SPC_DATA AVAIL USER LEN, &lAvailBytes);

dwTotalBytes += dwAvailBytes;

// here is the right position to do something with the data
printf ("Currently Available: %d, total: %d\n", lAvailBytes, dwTotalBytes);

// now we free the number of bytes and wait for the next buffer
spcm_dwSetParam i32 (hDrv, SPC_DATA AVAIL CARD_LEN, lAvailBytes);
dwError = spcm _dwSetParam i32 (hDrv, SPC_M2CMD, M2CMD DATA WAITDMA) ;
}

Limits of pre trigger, post trigger, memory size

The maximum memory size parameter is only limited by the number of activated channels and by the amount of installed memory. Please
keep in mind that each samples needs 1 byte of memory fo be stored. Minimum memory size as well as minimum and maximum post trigger
limits are independent of the activated channels or the installed memory.

Due to the infernal organization of the card memory there is a certain stepsize when setting these values that has to be taken info account.
The following table gives you an overview of all limits concerning pre trigger, post trigger, memory size, segment size and loops. The table
shows all values in relation to the installed memory size in samples. If more memory is installed the maximum memory size figures will increase
according to the complete installed memory

(c) Spectrum GmbH 63

Example Acquisition modes

Running the card with a sampling rate that is above 100 MS/s switches the cards internally to an interlace mode. In this mode two ADCs
are running in parallel using a 180° shifted signal. Due fo the fact that two ADCs are running this mode has a little different limitations and
is listed separately in the following table.

Activated Used Memory size Pre trigger Post trigger Segment size Loops
Channels Mode SPC_MEMSIZE SPC_PRETRIGGER SPC_POSTTRIGGER SPC_SEGMENTSIZE SPC_LOOPS
Min Max Step Min | Max | Step Min Max Step Min | Max | Step Min | Max | Step
1 channel Standard Single 8 Mem 4 defined by post trigger | 4 8G-4 4 not used not used
Standard Multi/ABA | 8 Mem 4 4 16k-32 | 4 4 Mem/2-4 | 4 8 | Mem/2 |4 not used
Standard Gate 8 Mem 4 4 16k-32 |4 4 Mem-4 4 not used not used
FIFO Single not used 4 16k-32 |4 not used 8 ‘ 8G-4 ‘ 4 0@ [4G-1 |1
FIFO Multi/ABA not used 4 16k-32 | 4 4 8G-4 4 8 8G-4 4 0(x) |4G-1 1
FIFO Gate not used 4 16k-32 |4 4 8G -4 4 not used 0 (x) |4G-1 1
1 channel Standard Single 16 Mem 8 defined by post trigger | 8 8G-8 8 not used not used
interlace | Standard Mulli/ABA] 16 | Mem 8 8 16k-32 |8 8 Mem/2-4 | 8 16 |Mem/2 |8 not used
Standard Gate 16 Mem 8 8 16k-32 |8 8 Mem-8 8 not used not used
FIFO Single not used 8 16k-32 |8 not used 16 ‘ 8G-8 ‘ 8 0@ [4G-1 |1
FIFO Multi/ABA not used 8 16k-32 |8 8 8G-8 8 16 8G-8 8 0 (w) |4G-1 1
FIFO Gate not used 8 16k-32 |8 8 8G -8 8 not used 0 (x) |4G-1 1
2 channels | Standard Single 8 Mem/2 |4 defined by post trigger | 4 8G-4 4 not used not used
Standard Multi/ABA | 8 Mem/2 |4 4 8k-16 |4 4 Mem/4-4 | 4 8 | Mem/4a |4 not used
Standard Gate 8 Mem/2 4 4 8k-16 4 4 Mem/2-4 | 4 not used not used
FIFO Single not used 4 8k-16 |4 not used 8 8G-4 4 0(x) |4G-1 1
FIFO Multi/ABA not used 4 8k-16 4 4 8G-4 4 8 8G-4 4 O (o) [4G-1 1
FIFO Gate not used 4 8k-16 4 4 8G -4 4 not used 0 (o) |4G-1 1
2 channels | Standard Single 16 Mem/2 |8 defined by post trigger | 8 8G-8 8 not used not used
interlace | Standard Mulli/ABA] 16 | Mem/2 |8 8 8k-16 |8 8 Mem/4-8 | 8 16 |Mem/4 |8 not used
Standard Gate 16 Mem/2 8 8 8k-16 8 8 Mem/2-8 | 8 not used not used
FIFO Single not used 8 8k-16 |8 not used 16 8G-8 8 0fx) |4G-1 1
FIFO Multi/ABA not used 8 8k-16 8 8 8G-8 8 16 8G-8 8 0(x) |4G-1 1
FIFO Gate not used 8 8k-16 8 8 8G -8 8 not used 0 (o) |4G-1 1
4 channels | Standard Single 8 Mem/4 |4 defined by post trigger | 4 8G-4 4 not used not used
Standard Multi/ABA | 8 Mem/4 |4 4 4k-8 |4 4 Mem/8-4 | 4 8 |Mem/g |4 not used
Standard Gate 8 Mem/4 |4 4 4k - 8 4 4 Mem/4-4 | 4 not used not used
FIFO Single not used 4 4k-8 4 not used 8 ‘ 8G-4 ‘ 4 0@ [4G-1 |1
FIFO Multi/ABA not used 4 4k - 8 4 4 8G-4 4 8 8G-4 4 O (o) [4G-1 1
FIFO Gate not used 4 4k - 8 4 4 8G-4 4 not used 0(x) |4G-1 1

Al figures listed here are given in samples. An entry of [8k - 16] means [8 kSamples - 16] = [8192 - 16] = 8176 samples.

The given memory and memory / divider figures depend on the installed on-board memory as listed below:

Installed Memory
64 MSample 128 MSample 256 MSample 512 MSample 1 GSample 2 GSampl 4 GSampl
Mem 64 MSample 128 MSample 256 MSample 512 MSample 1 GSample 2 GSample 4 GSample
Mem / 2 32 MSample 64 MSample 128 MSample 256 MSample 512 MSample 1 GSample 2 GSample
Mem / 4 16 MSample 32 MSample 64 MSample 128 MSample 256 MSample 512 MSample 1 GSample
Mem / 8 8 MSample 16 MSample 32 MSample 64 MSample 128 MSample 256 MSample 512 MSample

Please keep in mind that this table shows all values at once. Only the absolute maximum and minimum values are shown. There might be
additional limitations. Which of these values is programmed depends on the used mode. Please read the detailed documentation of the mode.

Buffer handling

To handle the huge amount of data that is possible to acquire with the M2i there is a very reliable two step buffer strategy set up. The on-
board memory of the card is completely used as a real FIFO buffer. In addition a part of the PC memory can be used as an additional software

64 M2i.20xx / M2i.20xx-exp Manual

Acquisition modes Example

buffer. Transfer between hardware FIFO and software buffer is performed interrupt driven and automatically by the driver to get best perfor-
mance. The following drawing will give you an overview of the structure of the data transfer handling:

Application Applicatidn Data Buffer
{up te seyeral GByte of PC memory)

A data buffer handshake is implemented in the driver which allows to run the card in different data transfer modes. The software transfer
buffer is handled as one large buffer which is on the one side controlled by the driver and filled automatically by busmaster DMA from/to
the hardware FIFO buffer and on the other hand it is handled by the user who set's parts of this software buffer available for the driver for
further transfer. The handshake is fulfilled with the following 3 software registers:

Register Value Direction Description

SPC_DATA_AVAIL_USER_LEN 200 read Returns the number of currently to the user available bytes inside a sample data transfer.
SPC_DATA_AVAIL_USER_POS 201 read Returns the position as byte index where the currently available data samples start.
SPC_DATA_AVAIL_CARD_LEN 202 write Writes the number of bytes that the card can now use for sample data transfer again

Internally the card handles two counters, a user counter and a card counter. Depending on the transfer direction the software registers have
slightly different meanings:

Transfer direction Register Direction Description
Write to card SPC_DATA_AVAIL_USER_LEN read This register contains the currently available number of bytes that are free to write new data to the
card. The user can now fill this amount of bytes with new data to be transferred.
SPC_DATA_AVAIL_CARD_LEN write After filling an amount of the buffer with new data to transfer to card, the user tells the driver with this
register that the amount of data is now ready to transfer.
Read from card SPC_DATA_AVAIL_USER_LEN read This register contains the currently available number of bytes that are filled with newly transferred

data. The user can now use this data for own purposes, copy it, write it to disk or start calculations
with this data.

SPC_DATA_AVAIL_CARD_LEN write After finishing the job with the new available data the user needs to tell the driver that this amount of
bytes is again free for new data to be transferred.
Any direction SPC_DATA_AVAIL_USER_POS read The register holds the current byte index position where the available bytes start. The register is just

intended to help you and to avoid own position calculation

Directly after start of transfer the SPC_DATA_AVAIL_USER_LEN is every time zero as no data is available for the user and the
SPC_DATA_AVAIL_CARD_LEN is every time identical fo the length of the defined buffer as the complete buffer is available for the card for
transfer.

The counter that is holding the user buffer available bytes (SPC_DATA_AVAIL USER _LEN) is sticking to the de-
fined notify size at the DefTransfer call. Even when less bytes already have been transferred you won’t get A
notice of it if the notify size is programmed to a higher value.

Remarks

¢ The transfer between hardware FIFO buffer and application buffer is done with scatter-gather DMA using a busmaster DMA controller
located on the card. Even if the PC is busy with other jobs data is still transferred until the application data buffer is completely used.

e Even if application data buffer is completely used there’s still the hardware FIFO buffer that can hold data until the complete on-board
memory is used. Therefore a larger on-board memory will make the transfer more reliable against any PC dead times.

¢ As you see in the above picture data is directly transferred between application data buffer and on-board memory. Therefore it is abso-
lutely critical to delete the application data buffer without stopping any DMA transfers that are running actually. It is also absolutely criti-
cal to define the application data buffer with an unmatching length as DMA can than try to access memory outside the application data
area.

¢ As shown in the drawing above the DMA control will announce new data fo the application by sending an event. Waiting for an event is
done internally inside the driver if the application calls one of the wait functions. Waiting for an event does not consume any CPU time
and is therefore highly desirable if other threads do a lot of calculation work. However it is not necessary to use the wait functions and
one can simply request the current status whenever the program has time to do so. When using this polling mode the announced avail-

(c) Spectrum GmbH 65

Example

Acquisition modes

able bytes still stick to the defined notify size!

¢ If the on-board FIFO buffer has an overrun (card to PC) or an underrun (PC to card) data transfer is stopped. However in case of transfer
from card to PC there is still a lot of data in the on-board memory. Therefore the data transfer will continue until all data has been trans-

ferred although the status information already shows an overrun.

¢ Getting best bus transfer performance is done using a ,continuous buffer”. This mode is explained in the appendix in greater detail.

The Notify size sticks to the page size which is defined by the PC hardware and the operating system. There-

fore the notify size must be a multiple of 4 kByte. For data transfer it may also be a fraction of 4k in the

range of 16, 32, 64, 128, 256, 512, 1k or 2k. No other values are allowed. For ABA and timestamp the notify
size can be 2k as a minimum. If you need to work with ABA or timestamp data in smaller chunks please use the

polling mode as described later.

The following graphs will show the current buffer positions in different states of the transfer. The drawings have been made for the transfer
from card to PC. However all the block handling is similar for the opposite direction, just the empty and the filled parts of the buffer are

inverted.

Step_1: Buffer definition

Directly after buffer definition the complete buffer is empty (card to PC) or
completely filled (PC to card). In our example we have a notify size which
is 1/4 of complete buffer memory to keep the example simple. In real
world use it is recommended to set the notify size to a smaller stepsize.

Step 2: Start and first data available

In between we have started the transfer and have waited for the first data
to be available for the user. When there is at least one block of notify size
in the memory we get an interrupt and can proceed with the data. Al-
though there is more data already transferred we only get announced to
have the notify size of data available. The USER_POS is still zero as we
are right at the beginning of the complete transfer.

Step 3: set the first data available for card

Now the data can be processed. If transfer is going from card to PC that
may be storing to hard disk or calculation of any figures. If transfer is go-
ing from PC to card that means we have o fill the available buffer again
with data. After this the amount of data is set available for the card and
for the next step.

Step 4: next data available

After reaching the next border of the notify size we get the next part of the
data buffer to be available. In our example this part of data is again only
of one notify size length. The user position will now be at the position [1
x notify size].

Step 5: set data available again
Again after processing the data we set it free for the card use.

In our example we now make something else and don’t react to the inter-
rupt for a longer time. In the background the buffer is filled with more da-
ta.

Step 6: roll over the end of buffer

Now nearly the complete buffer is filled. Please keep in mind that our cur-
rent user position is still at the end of the data part that we got in step 4.
Therefore the data to process now is split in two parts. Part 1 is at the end
of the buffer while part 2 is starting with address O.

Step 7: set the rest of the buffer available

Feel free to process the complete data or just the part 1 until the end of
the buffer as we do in this example. If you decide to process complete
buffer please keep in mind the roll over at the end of the buffer.

This buffer handling can now continue endless as long as we manage to
set the data available for the card fast enough.

USER_LEN

USER_POS

) T

: emply:BuFFer :

| | |

T T i |
e TE—

Motify Size : : | |

[[| |

USER_POS
1
emply:BuFFer

USER_LEN

USER_POS

B T
| USER_LEN
! part 2

B Ee——
CARD_LEN | l i
1 |

¥

! USER_LEN |
! ser_pos Port!! !
T
|
|
!
| - : >
| CARD_LEN

66

M2i.20xx / M2i.20xx-exp Manual

Acquisition modes Example

Buffer handling example for transfer from card to PC

char* pcData = new char[lBufferSizeInBytes];

// we now define the transfer buffer with the minimum notify size of on page = 4 kByte
spcm_dwDefTransfer i64 (hDrv, SPCM BUF_DATA, SPCM DIR_CARDTOPC , 4096, (void*) pcData, 0, lBufferSizeInBytes);

do

{
// we wait for the next data to be available. Afte this call we get at least 4k of data to proceed
dwError = spcm _dwSetParam i32 (hDrv, SPC_M2CMD, M2CMD_DATA STARTDMA | M2CMD_DATA WAITDMA) ;

if (!dwError)

{

// if there was no error we can proceed and read out the current amount of available data
spcm_dwGetParam i32 (hDrv, SPC_DATA AVAIL USER_LEN, &lAvailBytes);
spcm_deetParam_i32 (hDrv, SPC_DATA_ AVAIL USER_POS, &lBytePos);

printf (“We now have %d new bytes available\n”, lAvailBytes);
printf (“The available data starts at position %d\n”, 1BytesPos);

// we take care not to go across the end of the buffer
if ((1BytePos + lAvailBytes) >= lBufferSizeInBytes)
1AvailBytes = 1lBufferSizeInBytes - 1BytePos;

// our do function get’s a pointer to the start of the available data section and the length
vDoSomething (&pcData[lBytesPos], lAvailBytes);

// the buffer section is now immediately set available for the card
spcm_dwSetParam i32 (hDrv, SPC DATA AVAIL CARD LEN, lAvailBytes);
}

}

while (!dwError); // we loop forever if no error occurs

Buffer handling example for transfer from PC to card

char* pcData = new char[lBufferSizeInBytes];

// before starting transfer we ned to once fill complete buffer memory with data
vDoGenerateData (&pcData[0], lBufferSizeInBytes);

// we now define the transfer buffer with the minimum notify size of on page = 4 kByte
spcm_dwDefTransfer_ i64 (hDrv, SPCM BUF_DATA, SPCM DIR_PCTOCARD , 4096, (void*) pcData, 0, lBufferSizeInBytes);

do

{
// we wait for the next data to be empty. After this call we get at least 4k of data to proceed
dwError = spcm dwSetParam i32 (hDrv, SPC_M2CMD, M2CMD DATA STARTDMA | M2CMD DATA WAITDMA) ;

if (!dwError)

{

// if there was no error we can proceed and read out the current amount of available data
spcm_dwGetParam i32 (hDrv, SPC_DATA AVAIL USER LEN, &lAvailBytes);
spcm_dwGetParam i32 (hDrv, SPC_DATA AVAIL USER_POS, &lBytePos);

printf (“We now have %d free bytes available\n”, lAvailBytes);
printf (“The available data starts at position %d\n”, 1BytesPos);

// we take care not to go across the end of the buffer
if ((1BytePos + 1lAvailBytes) >= 1lBufferSizeInBytes)
1AvailBytes = 1lBufferSizeInBytes - 1BytePos;

// our do function get’s a pointer to the start of the available data section and the length
vDoGenerateData (&pcData[lBytesPos], lAvailBytes);

// the buffer section is now immediately set available for the card again
spcm_dwSetParam_ i32 (hDrv, SPC_DATA AVAIL CARD LEN, lAvailBytes);
}

}

while (!dwError); // we loop forever if no error occurs

Please keep in mind that you are using a continuous buffer writing/reading that will start again at the zero
position if the buffer length is reached. However the DATA_AVAIL_USER_LEN register will give you the com- A
plete amount of available bytes even if one part of the free area is at the end of the buffer and the second

half at the beginning of the buffer.

(c) Spectrum GmbH 67

Data organisation

Acquisition modes

Data organisation

Data is organized in a multiplexed way in the transfer buffer. If using 2 modules data of first activated channel of first module comes first,
then data of first activated channel of second module, then second activated channel of first module and so on.

Activated Channels | ChO | Ch1 Ch_2 Ch3] Samples ordering in buffer memory s arting ith data offset zero

1 channel X AO Al A2 A3 A4 A5 Ab A7 A8 A9 A10 | A11 |A12 | A13 | Al4 | Al5 | Al6
1 channel X BO B1 B2 B3 B4 BS Bé B7 B8 B9 B10 |B11 [B12 [B13 [B14 [B15 |[B16
1 channel X (e0] Cl1 C2 C3 C4 C5 Cé Cc7 C8 c9 C10 [C11 [C12 [C13 [Cl14 [C15 [C16
1 channel X DO D1 D2 D3 D4 D5 Dé D7 D8 D9 D10 | D11 (D12 (D13 (D14 [D15 [D16
2 channels X X AO BO Al B1 A2 B2 A3 B3 A4 B4 A5 B5 Ab Bé A7 B7 A8
2 channels X X A0 [CO |A1 C1 A2 |C2 |A3 |C3 |A4 |C4 |A5 |C5 |A6 |C6 |A7 |C7 |AS8
2 channels X X AO DO Al D1 A2 D2 A3 D3 A4 D4 A5 D5 Ab Dé A7 D7 A8
2 channels X X BO Cco B1 Cl1 B2 C2 B3 C3 B4 C4 B5 c5 Bé Cc6 B7 c7 B8
2 channels X X BO DO B1 D1 B2 D2 B3 D3 B4 D4 B5 D5 Bé Dé B7 D7 B8
2 channels X X CO DO Cl D1 C2 D2 C3 D3 C4 D4 C5 D5 Cb Dé C7 D7 C8
4 channels X X X X A0 CO BO DO Al C1 B1 D1 A2 C2 B2 D2 A3 C3 B3 D3 A4

The samples are re-named for better readability. AO is sample O of channel 0, C4 is sample 4 of channel 2, and so on

Sample format

The 8 bit A/D samples are stored in twos complement in one byte. 8 bit resolution means that data is ranging from -128...to...+127.

Bit

Standard Mode

D7 ADx Bit 7 (MSB)
Dé ADx Bit 6

D5 ADx Bit 5

D4 ADx Bit 4

D3 ADx Bit 3

D2 ADx Bit 2

D1 ADx Bit 1

DO ADx Bit O (LSB]

68 M2i.20xx / M2i.20xx-exp Manual

Clock generation Overview

Clock generation

Overview

The different clock modes

The Spectrum M2i cards offer a wide variety of different

clock modes to match all the customers needs. All of the ig— Sorthl Oplon =~ = g 7771 T ST T T ST T T]
clock modes are described in detail with programming ex- 1 :::,.._ —]
amples in this chapter. i e S .
' Divider| Star-Hub
(Gt} o
The figure is showing an overview of the complete engine : _ — '
used on all M2i cards for clock generation. : '
Option) 117117 77 o Extern
The purpose of this chapter is to give you a guide to the Extern© [Ofxtern
best matching clock settings for your specific application
and needs. Divider] CA/D
PLL | S o—

[10 MHz =

Standard internal sample rate (PLL)

PLL with internal 10 MHz reference. This is the easiest and most common way to generate a sample rate with no need for additional external
clock signals. The sample rate has a fine resolution. You can find details on the granularity of the clock in PLL mode in the technical data
section of this manual.

Quartz1 with or without divider

This mode provides an internal sampling quartz clock with a dedicated divider. It's best suited for applications that need an even lower clock
jitter than the PLL produces. The possible sample rates are restricted to the values of the divider. For details on the available divider values
please see the according section in this chapter or take a look at the technical data section of this manual.

Quartz2 with or without PLL and/or with or without divider (optional)

This optional second Quartz?2 is for special customer needs, either for a special direct sampling clock or as a very precise reference for the
PLL. Please feel free to contact Spectrum for your special needs.

External reference clock

PLL with external 1 MHz to 125 MHz reference clock. This provides a very good clock accuracy if a stable external reference clock is used.
It also allows the easy synchronization with an external source.

Direct external clock

Any clock can be fed in that matches the specification of the board. The external clock signal can be used to synchronize the board on a
system clock or to feed in an exact matching sample rate.

External clock with divider

In addition to the direct external clocking it is also possible to use the externally fed in clock and divide it for generating a low-jitter sample
rate of a slower speed than the external clock available.

Synchronization clock (optional)

The star-hub option allows the synchronization of up to 16 cards of the M2i series from Spectrum with a minimal phase delay between the
different cards. As this clock is also available at the dividers input, cards of the same or slower sampling speeds can be synchronized. For
details on the synchronization option please take a look at the dedicated chapter in this manual.

(c) Spectrum GmbH 69

Internally generated sampling rate Clock generation

Clock Mode Register

The selection of the different clock modes has to be done by the SPC_CLOCKMODE register. All available modes, can be read out by the
help of the SPC_AVAILCLOCKMODES register.

Register Value Direction Description
SPC_AVAILCLOCKMODES 20201 read Bitmask, in which all bits of the below mentioned clock modes are set, if available.
SPC_CLOCKMODE 20200 read/write Defines the used clock mode or reads out the actual selected one.
SPC_CM_INTPLL 1 Enables internal PLL with 10 MHz internal reference for sample clock generation
SPC_CM_QUARTZ1 2 Enables Quartz1 for sample clock generation
SPC_CM_QUARTZ2 4 Enables optional Quartz2 for sample clock generation
SPC_CM_EXTERNAL 8 Enables external clock input for direct sample clock generation
SPC_CM_EXTDIVIDER 16 Enables external clock input for divided sample clock generation
SPC_CM_EXTREFCLOCK 32 Enables internal PLL with external reference for sample clock generation

The different clock modes and all other related or required register settings are described on the following pages.

Internally generated sampling rate

Standard internal sampling clock (PLL)

The internal sampling clock is generated in default mode by a PLL and dividers out of an internal precise 10 MHz frequency reference. You
can select the clock mode by the dedicated register shown in the table below:

Register Value Direction Description
SPC_CLOCKMODE 20200 read/write Defines the used clock mode
I SPC_CM_INTPLL 1 Enables internal PLL with 10 MHz internal reference for sample clock generation

In most cases the user does not have to care on how the desired sampling rate is generated by multiplying and dividing internally. You simply

write the desired sample rate to the according register shown in the table below and the driver makes all the necessary calculations. If you
want to make sure the sample rate has been set correctly you can also read out the register and the driver will give you back the sampling
rate that is matching your desired one best.

Register Value Direction Description
SPC_SAMPLERATE 20000 write Defines the sample rate in Hz for internal sample rate generation.
read Read out the internal sample rate that is nearest matching to the desired one.

If o sampling rate is generated internally, you can additionally enable the clock output. The clock will be available on the external clock
connector and can be used to synchronize external equipment with the board.

Register Value Direction Description
SPC_CLOCKOUT 20110 read/write Enables clock output on external clock connector.On A/D and D/A cards only possible with internal
clocking.

Example on writing and reading internal sampling rate

spcm_dwSetParam_i32 (hDrv, SPC_CLOCKMODE, SPC_CM INTPLL); // Enables internal PLL mode
spcm_dwSetParam_i32 (hDrv, SPC_SAMPLERATE, 1000000); // Set internal sampling rate to 1 MHz
spcm_dwSetParam i32 (hDrv, SPC_CLOCKOUT, 1); // enable the clock output of that 1 MHz clock
spcm_dwGetParam_ i32 (hDrv, SPC_SAMPLERATE, &lSamplerate); // Read back the programmed sample rate and
printf (,Sample rate = %d\n“, lSamplerate); // print it. Output should be ,Sample rate = 1000000"

Minimum internal sampling rate

The minimum internal sampling rate on all M2i cards is limited to 1 kS/s and the maximum sampling rate depends on the specific type of
board. The maximum sampling rates for your type of card are shown in the tables below.

70 M2i.20xx / M2i.20xx-exp Manual

Clock generation

Internally generated sampling rate

Maximum internal sampling rate in MS/s

activated Channels o — o —
I ~ & ©
cho Ch1 Ch2 Ch3 S S S S
= = = =
X 50 MS/s | 50 MS/s | 200 MS/s | 200 MS/s
X 50 MS/s | 50 MS/s 100 MS/s | 100 MS/s
X n.a. 50MS/s | n.a. 200 MS/s
X n.a. 50 MS/s | n.a. 100 MS/s
X X 50 MS/s | 50 MS/s | 100 MS/s | 100 MS/s
X X n.a. 50 MS/s | n.a. 200 MS/s
X X n.a. 50MS/s | n.a. 100 MS/s
X X n.a. 50 MS/s | n.a. 100 MS/s
X X n.a. 50MS/s | n.a. 100 MS/s
X X n.a. 50 MS/s | n.a. 100 MS/s
X X X X n.a. 50 MS/s | n.a. 100 MS/s

Using plain Quartz1 without PLL

In some cases it is useful for the application not to have the on-board PLL activated. Although the PLL used on the Spectrum boards is a low-
jitter version it still produces more clock jitter than a plain quartz oscillator. For these cases the Spectrum boards have the opportunity to switch
off the PLL by software and use a simple clock divider.

Register Value Direction Description
SPC_CLOCKMODE 20200 read/write Defines the used clock mode
I SPC_CM_QUARTZ1 2 Enables Quartz1 for sample clock generation

The Quartz1 used on the board is similar to the maximum sampling rate the board can achieve. As with internal PLL mode it's also possible
to program the clock mode first, set a desired sampling rate with the SPC_SAMPLERATE register and to read it back. The driver will internally
set the divider and find the closest matching sampling rate. The result will then again be the best matching sampling rate.

If a sampling rate is generated internally, you can additionally enable the clock output. The clock will be available on the external clock
connector and can be used to synchronize external equipment with the board.

Register

Value

Direction

Description

SPC_CLOCKOUT

20110

read/write

Enables clock output on external clock connector.On A/D and D/A cards only possible with internal

clocking.

Using plain Quartz2 without PLL (optional)

In some cases it is necessary fo use a special frequency for sampling rate generation. For these applications all cards of the M2i series can
be equipped with a special customer quartz. Please contact Spectrum for details on available oscillators. If your card is equipped with a
second oscillator you can enable it for sampling rate generation with the following register:

Register Value Direction Description
SPC_CLOCKMODE 20200 read/write Defines the used clock mode
I SPC_CM_QUARTZ2 4 Enables optional quartz2 for sample clock generation

In addition to the direct usage of the second clock oscillator one can program the internal clock divider to use slower sampling rates. As with
internal PLL mode it's also possible to program the clock mode first, set a desired sampling rate with the SPC_SAMPLERATE register and to
read it back. The result will then again be the best matching sampling rate.

If a sampling rate is generated internally, you can additionally enable the clock output. The clock will be available on the external clock
connector and can be used to synchronize external equipment with the board.

Value Direction

20110

Register
SPC_CLOCKOUT

Description

read/write

Enables clock output on external clock connector. Only possible with internal clocking.

External reference clock

If you have an external clock generator with a extremely stable frequency, you can use it as a reference clock. You can connect it to the
external clock connector and the PLL will be fed with this clock instead of the internal reference. The following table shows how to enable the
reference clock mode:

Register Value Direction Description
SPC_CLOCKMODE 20200 read/write Defines the used clock mode
I SPC_CM_EXTREFCLOCK 32 Enables internal PLL with external reference for sample clock generation

Due to the fact that the driver needs to know the external fed in frequency for an exact calculation of the sampling rate you must set the
SPC_REFERENCECLOCK register accordingly as shown in the table below. The driver automatically then sets the PLL to achieve the desired

(c) Spectrum GmbH 71

External clocking Clock generation

sampling rate. Please be aware that the PLL has some infernal limits and not all desired sampling rates may be reached with every reference
clock.

Register Value Direction Description
SPC_REFERENCECLOCK 20140 read/write Programs the external reference clock in the range from 1 MHz to 125 MHz.
I External sampling rate in Hz as an integer value You need to set up this register exactly fo the frequency of the external fed in clock.

Example of reference clock:

spcm_dwSetParam_i32 (hDrv, SPC_CLOCKMODE, SPC_CM EXTREFCLOCK) ; // Set to reference clock mode
spcm dwSetParam i32 (hDrv, SPC REFERENCECLOCK, 10000000); // Reference clock that is fed in is 10 MHz
spcm_dwSetParam i32 (hDrv, SPC_SAMPLERATE, 25000000) ; // We want to have 25 MHz as sampling rate

Termination of the clock input

If the external connector is used as an input, either for feeding in an external reference clock or for external clocking you can enable a
50 Ohm termination on the board. If the termination is disabled, the impedance is high. Please make sure that your source is capable of
driving that current and that it still fulfills the clock input specification as given in the technical data section.

Register Value Direction Description

SPC_CLOCK500HM 20120 read/write A , 1" enables the 50 Ohm termination at the external clock connector. Only possible, when using
the external connector as an input.

Oversampling

All fast A/D converters have a minimum clock frequency that is defined by the manufacturer of this A/D converter. You find this minimum
sampling rate specified in the technical data section as minimum external sampling clock.

When using one of the above mentioned internal clock modes the driver allows you to program sampling clocks that lay far beneath this
minimum A/D converter clock. To run the A/D convertfer properly we use a special oversampling mode where the A/D converter is within
it's specification and only the digital part of the card is running with the slower clock. This is completely defined inside the driver and cannot
be modified by the user. The following register allows to read out the oversampling factor for further calculation

Register Value Direction Description

SPC_OVERSAMPLINGFACTOR 200123 read only Returns the oversampling factor for further calculations. If oversampling isn't active a 1 is returned.

The oversampling factor is of interest for three different cases:

® When using clock output the sampling clock at the output connector is the real A/D converter clock and not the programmed slower sam-
pling rate. To calculate the output clock, please just multiply the programmed sampling clock with the oversampling factor read with the
above mentioned register.

¢ As all modern A/D converters have a data pipeline integrated to obtain high speed sampling together with high resolution there is a
delay between the trigger and the valid data. Our hardware compensates this delay internally as long as sampling is done synchronous.
When oversampling is active this compensation no longer works and data is shiffed compared to the trigger position by a couple of sam-
ples.

¢ When using the timestamp option the counter is also running with the real A/D converter clock and not with the programmed slower sam-
pling clock. When interpreting timestamp values it is therefore necessary to check the oversampling factor and take it into account.

External clocking

Direct external clock

An external clock can be fed in on the external clock connector of the board. This can be any clock, that matches the specification of the
card. The external clock signal can be used to synchronize the card on a system clock or to feed in an exact matching sampling rate.

Register Value Direction Description
SPC_CLOCKMODE 20200 read/write Defines the used clock mode
I SPC_CM_EXTERNAL 8 Enables external clock input for direct sample clock generation

The maximum values for the external clock is board dependant and shown in the table below.

72 M2i.20xx / M2i.20xx-exp Manual

Clock generation External clocking

Termination of the clock input

If the external connector is used as an input, either for feeding in an external reference clock or for external clocking you can enable a
50 Ohm termination on the board. If the termination is disabled, the impedance is high. Please make sure that your source is capable of
driving that current and that it still fulfills the clock input specification as given in the technical data section.

Register Value Direction Description
SPC_CLOCK500HM 20120 read/write A , 1" enables the 50 Ohm termination at the external clock connector. Only possible, when using
the external connector as an input.

Minimum external sampling rate

The minimum external sampling rate is limited on all boards to 1 MS/s and the maximum sampling rate depends on the specific type of
board. The maximum sampling rates for your type of board are shown in the tables below.

Maximum external sampling rate in MS/s

Activated Jo — o —
Channels |S S 8 3
S S S S
& & & &
= = = =
1 50 MS/s | 50 MS/s | 100 MS/s | 100 MS/s
2 50 MS/s | 50 MS/s | 100 MS/s | 100 MS/s
4 n.a. 50 MS/s | n.a. 100 MS/s
An external sampling rate above the mentioned maximum can cause damage to the board. A

Ranges for external sampling rate

Due to the internal structure of the board it is essential to know for the driver in which clock range the external clock is operating. The external
range register must be set according to the clock that is fed in externally.

Register Value Direction Description
SPC_EXTERNRANGE 20130 read/write Defines the range of the actual fed in external clock. Use one of the below mentioned ranges
EXRANGE_LOW 64 External range for slower clocks

EXRANGE_HIGH 128

External range for faster clocks

The range must not be left by more than 5% when the board is running. Remember that the ranges depend
on the activated channels as well, so a different board setup for external clocking must always include the A
related clock ranges.

This table below shows the ranges that are defined by the two range registers mentioned above. The range depends on the activated channels
per module. For details about what channels of your specific type of board is located on which module, please take a look at the according
introduction chapter. Please be sure to select the correct external range, as otherwise it is possible that the card will not run properly.

For cards with 8 bit converter resolution For cards with 12, 14, 16 bit converter resolution

Activated Channels EXRANGE_LOW EXRANGE_HIGH EXRANGE_LOW EXRANGE_HIGH
on one module

1 < 50.0 MHz >=50.0 MHz < 50.0 MHz >=50.0 MHz

2 < 50.0 MHz >= 50.0 MHz < 25.0 MHz >=25.0 MHz

4 <25.0 MHz >=25.0 MHz < 12.5 MHz >=12.5 MHz

8 < 12.5 MHz >=12.5 MHz < 6.0 MHz >= 6.0 MHz

How to read this table? If you have a card with a total number of four channels (available on two modules with two channels each), you have
an external clock source with 30 MHz and you activate channel O and channel 2 (one channel per module), you will have to set the external
range to EXRANGE_LOW. If you activate channel O and channel 1 on the same card and use the same 30 MHz external clock, you will
have to set the external range EXRANGE_HIGH instead. Example:

spcm_dwSetParam i32 (hDrv, SPC_CLOCKMODE, SPC_CM EXTERNAL) ;

// activate ext. clock (which is e.g. 30 MHz)
spcm_dwSetParam_i32 (hDrv, SPC_CHENABLE, CHANNELO | CHANNEL1) ;

// activate two channels (asuming that they
// are located on one module) you

spcm_dwSetParam i32 (hDrv, SPC_EXTERNRANGE, EXRANGE HIGH) ; // set external range to EXRANGE_HIGH

Further external clock details

* When using the high clock range the external clock has to be stable, needs to be continuously and is not allowed to have gaps or fast
changes in frequency.

® When using the high clock range there must be a valid external clock be present before the start command is given.

¢ The external clock is directly used to feed the converters (on analog boards) or to feed the input registers (on digital boards). Therefore the

quality and jitter of this clock may improve or degrade the dynamic performance of the card depending on the quality of the provided
clock.

® When using the low clock range the clock needn’t to be continuously and may have gaps. When using a A/D card please keep in mind
that most A/D converters need a stable clock and there might be false samples inbetween directly after a gap or after a fast clock fre-

(c) Spectrum GmbH 73

External clocking Clock generation

quency change. The quality of the analog samples may also be worse than with a continuous clock.

External clock with divider

In some cases it is necessary fo generate a slower frequency for sampling rate generation, than the available external source delivers. For
these applications one can use an external clock and divide it.

Register Value Direction Description
SPC_CLOCKMODE 20200 read/write Defines the used clock mode
I SPC_CM_EXTDIVIDER 16 Enables external clock input for divided sample clock generation

The value for the clock divider must be written to the register shown in the table below:

Register Value Direction Description
SPC_CLOCKDIV 20040 read/write Register for setting the clock divider. Values up to 8190 in steps of two are allowed.

Please set the external clock range register matching your fed in clock.

Ranges for external sampling rate
Due to the internal structure of the board it is essential to know for the driver in which clock range the external clock is operating. The external
range register must be set according to the clock that is fed in externally.

Register Value Direction Description

SPC_EXTERNRANGE 20130 read/write Defines the range of the actual fed in external clock. Use one of the below mentioned ranges
EXRANGE_LOW 64 External range for slower clocks
EXRANGE_HIGH 128 External range for faster clocks

The range must not be left by more than 5% when the board is running. Remember that the ranges depend
A on the activated channels as well, so a different board setup for external clocking must always include the
related clock ranges.

This table below shows the ranges that are defined by the two range registers mentioned above. The range depends on the activated channels
per module. For details about what channels of your specific type of board is located on which module, please take a look at the according
infroduction chapter. Please be sure to select the correct external range, as otherwise it is possible that the card will not run properly.

Activated Channels EXRANGE_LOW EXRANGE_HIGH
on one module

1 < 50.0 MHz >=50.0 MHz

2 < 25.0 MHz >=25.0 MHz

3 < 16.0 MHz >=16.0 MHz

4 <12.5 MHz >=12.5 MHz

5 < 10.0 MHz >=10.0 MHz

6 < 8.0 MHz >= 8.0 MHz

7 < 7.0 MHz >=7.0 MHz

8 < 6.0 MHz >= 6.0 MHz

How to read this table? If you have a card with a total number of four channels (available on two modules with two channels each), you have
an external clock source with 30 MHz and you activate channel O and channel 2 (one channel per module), you will have to set the external
range to EXRANGE_LOW. If you activate channel O and channel 1 on the same card and use the same 30 MHz external clock, you will
have to set the external range EXRANGE_HIGH instead. Example:

spcm_dwSetParam i32 (hDrv, SPC_CLOCKMODE, SPC_CM EXTERNAL) ; // activate ext. clock (which is e.g. 30 MHz)

spcm_dwSetParam_i32 (hDrv, SPC_CHENABLE, CHANNELO | CHANNEL1) ; // activate two channels (asuming that they
// are located on one module) you

spcm_deetParam_i32 (hDrv, SPC_EXTERNRANGE, EXRANGE_HIGH) ; // set external range to EXRANGE_HIGH

Further external clock detdails

® When using the high clock range the external clock has to be stable, needs to be continuously and is not allowed to have gaps or fast
changes in frequency.

¢ When using the high clock range there must be a valid external clock be present before the start command is given.

¢ The external clock is directly used to feed the converters (on analog boards) or to feed the input registers (on digital boards). Therefore the
quality and jitter of this clock may improve or degrade the dynamic performance of the card depending on the quality of the provided
clock.

® When using the low clock range the clock needn’t to be continuously and may have gaps. But as A/D converters need a stable clock
there might be false samples inbetween directly affer a gap or after a fast clock frequency change. The quality of the analog samples may

74 M2i.20xx / M2i.20xx-exp Manual

Clock generation External clocking

also be worse than with a continuous clock.

Termination of the clock input

If the external connector is used as an input, either for feeding in an external reference clock or for external clocking you can enable a
50 Ohm termination on the board. If the termination is disabled, the impedance is high. Please make sure that your source is capable of
driving that current and that it still fulfills the clock input specification as given in the technical data section.

Register Value Direction Description

SPC_CLOCK500HM 20120 read/write A 1" enables the 50 Ohm termination at the external clock connector. Only possible, when using
the external connector as an input.

(c) Spectrum GmbH 75

General Description Trigger modes and appendant registers

Trigger modes and appendant registers

General Description

The trigger modes of the Spectrum M2i series A/D cards are very extensive and give you the possibility to detect nearly any trigger event,
you can think of.

You can choose between seven external TTL trigger modes and up to 20 internal trigger modes (on analog acquisition cards) including soft-
ware and channel trigger, depending on your type of board. Many of the channel trigger modes can be independently set for each input
channel (on A/D boards only) resulting in a even bigger variety of modes. This chapter is about to explain all of the different trigger modes
and setting up the card’s registers for the desired mode.

Every analog Spectrum board has one dedicated SMB connector mounted in it's bracket for feeding in an external trigger signal or generating

a trigger output of an internal trigger event. Due to the fact that only one connector is available for external trigger I/O, it is not possible to
forward the fed in external trigger signal to another board. If this is however necessary, you need to split up the external trigger signal before.

Trigger Engine Overview

To extend trigger facilities of the various trigger

sources/modes further on, the trigger engine of External0 —
the Spectrum M2i series allows the logical combi- Externall —]
nation of different trigger events by an AND-mask (X100)—| {option)

- . XI01)— v
and an OR-mask () o
The Enable trigger allows the user to enable or dis- Software— -
able all trigger sources (including channel trigger Channel—
and external TTL trigger) with a single software Forcetrigger—
command.

AND
When the card is waiting for a trigger event, ei-
ther a channel trigger or an external trigger the External0 — (static)
force-trigger command allows to force a trigger E"";';'gl—
event with a single software command. ()—
{X101)—{AND —

Before the trigger event is finally generated, it is Channel —
wired through a programmable trigger delay. Enabletrigger**—| ** Enabletrigger has no effect on Forcetrigger

Trigger masks
Trigger OR mask

The purpose of this passage is to explain the trigger OR mask (see left figure) and all the appendant software
registers in detail.

(1] il

The OR mask shown in the overview before as one obiject, is separated into two parts: a general OR mask for
external TTL trigger and software trigger and a channel OR mask.

Every trigger source of the M2i series cards is

wirfad to'one of the cbqve mentionef:J OR masks. The user then’ can program Externalo e
which trigger source will be recognized, and which one won't. SPC_TMASK EXTO ----------=--os-o-o-- '

Externall 7 <
This selection for the general mask is realized with the SPC_TRIG_ORMASK e '
register in combination with constants for every possible trigger source. e [le}——/"—— OR
This selection for the channel mask is realized with the FinE e (XIOI}
SPC,TRIC??CHTORMASKO and the SPC?TRIG?CH?ORN_\ASK] register in Sofrware -
combination with constants for every possible channel trigger source. SPC_TMASK_SOFTWARE - - -~ ~- -~~~ -~~~ :
In either case the sources are coded as a bitfield, so that they can be com- — ___ Channeld— gi° —
bined by one access to the driver with the help of a bitwise OR. - - ::1“

Channel31 —d("—

76 M2i.20xx / M2i.20xx-exp Manual

Trigger modes and appendant registers Trigger masks

The table below shows the relating register for the general OR mask and the possible constants that can be written fo it.

Register Value Direction Description
SPC_TRIG_AVAILORMASK 40400 read Bitmask, in which all bits of the below mentioned sources for the OR mask are set, if available.
SPC_TRIG_ORMASK 40410 read/write Defines the events included within the trigger OR mask of the card.
SPC_TMASK_NONE 0 No trigger source selected
SPC_TMASK_SOFTWARE 1h Enables the software trigger for the OR mask. The card will trigger immediately after start.
SPC_TMASK_EXTO 2h Enﬁéﬂes the external triggerO for the OR mask. The card will trigger when the programmed condition for this input is
valid.
SPC_TMASK_EXT1 4h Enables the external trigger for the OR mask. This input is only available on digital cards. The card will trigger when
the programmed condition for this input is valid.
SPC_TMASK_XIO0 100h Enables the extra TTL trigger O for the OR mask. This input is only available when the option BaseXIO is installed.
SPC_TMASK XIO1 200h Enables the extra TTL trig_ger 1 for the OR mask. This input is only available when the option BaseXIO is installed.

The following example shows, how to setup the OR mask, for an external TTL trigger. As an example a simple edge detection has been
chosen. The explanation and a detailed description of the different trigger modes for the external TTL trigger inputs will be shown in the ded-
icated passage within this chapter.

spcm dwSetParam i32 (hDrv, SPC TRIG ORMASK, SPC TMASK EXTO); // Enable external trigger within the OR mask
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_EXTO_ MODE, SPC_TM POS); // Setting up external TTL trigger for rising edges

The table below is showing the registers for the channel OR mask and the possible constants that can be written to it.

Register Value Direction Description
SPC_TRIG_CH_AVAILORMASKO 40450 read Bitmask, in which all bits of the below mentioned sources/channels (0...31) for the channel OR mask
are set, if available.
SPC_TRIG_CH_AVAILORMASK 1 40451 read Bitmask, in which all bits of the below mentioned sources/ channels (32...63) for the channel OR
mask are set, if available.
SPC_TRIG_CH_ORMASKO 40460 read/write Includes the analog or digital channels (0...31) within the channel trigger OR mask of the card.
SPC_TRIG_CH_ORMASK1 40461 read/write Includes the analog or digital channels (32...63) within the channel trigger OR mask of the card.
SPC_TMASKO_CHO 1h Enables channelO (channel32) for recognition within the channel OR mask. m
SPC_TMASKO_CH1 2h Enables channell (channel33) for recognition within the channel OR mask.
SPC_TMASKO_CH2 4h Enables channel2 (channel34) for recognition within the channel OR mask.
SPC_TMASKO_CH3 8h Enables channel3 (channel35) for recognition within the channel OR mask.
SPC_TMASKO_CH28 10000000h | Enables channel28 (channel60) for recognition within the channel OR mask.
SPC_TMASKO_CH29 20000000h | Enables channel29 (channel61 for recognition within the channel OR mask.
SPC_TMASKO_CH30 40000000h | Enables channel30 (channel62) for recognition within the channel OR mask.
SPC_TMASKO_CH31 80000000h | Enables channel31 (channelé3) for recognition within the channel OR mask.

The following example shows, how to setup the OR mask, for an external TTL trigger. As an example a simple edge detection has been
chosen. The explanation and a detailed description of the different trigger modes for the external TTL trigger inputs will be shown in the ded-
icated passage within this chapter.

spcm dwSetParam i32 (hDrv, SPC TRIG CH ORMASKO, SPC TMASK CHO); // Enable channel0 trigger within the OR mask
spcm_dwSetParam i32 (hDrv, SPC_TRIG_EXTO_MODE, SPC_TM_POS) ; // Setting up external trigger for rising edges

(c) Spectrum GmbH 77

Trigger masks Trigger modes and appendant registers

Trigger AND mask

The purpose of this passage is to explain the trigger AND mask (see left figure) and all the appendant software
registers in detail.

The AND mask shown in the overview before as one object, is separated into two parts: a general AND mask
for external TTL trigger and software trigger and a channel AND mask.

il

[

Every trigger source of the M2i series cards
except the software trigger is wired fo one .OF the above m.entioned AND External0 -,
masks. The user then can program which trigger source will be recognized, SPC_TMASK_EXTO -- -=nnnnnnmmme e mme -
and which one won't. Externall T
SPC_TMASK_EXTL - - - --n-nnmmmenos’ :
This selection for the general mask is realized with the SPC_TRIG_ANDMASK $5C TUASK X100 - [XIOO}——/D—~ AND
register in combination with constants for every possible trigger source. = o) ~

SPC_TMASK _XTOL -« -ncncmmmnnmemaas
This selection for the channel mask is realized with the

SPC_TRIG_CH_ANDMASKO and the SPC_TRIG_CH_ANDMASK] register
in combination with constants for every possible channel trigger source. In

either case the sources are coded as a bitfield, so that they can be combined Channelo gie channel
by one access to the driver with the help of a bitwise OR. SPC_TMASKD_CHO - vvemmvmnmmnneaan " .. | “aND
The table below shows the relating register for the general AND mask and Channel31——"] o——
the possible constants that can be written to it. SPC_TMASKO_CH3L -~ - -oooomomnooono :
Register Value Direction Description
SPC_TRIG_AVAILANDMASK 40420 read Bitmask, in which all bits of the below mentioned sources for the AND mask are set, if available.
SPC_TRIG_ANDMASK 40430 read/write Defines the events included within the trigger AND mask of the card.
SPC_TMASK_EXTO 2h Enables the external triggerO for the AND mask. The card will trigger when the programmed condition for this input is
valid.
SPC_TMASK_EXT1 4h Enables the external trigger1 for the AND mask. This input is only available on digital cards. The card will trigger
when the programmed condition for this input is valid.
SPC_TMASK_XIO0 100h Enables the extra TTL trigger O for the OR mask. This input is only available when the option BaseXIO is installed.
SPC_TMASK_XIO1 200h Enables the extra TTL trigger 1 for the OR mask. This input is only available when the option BaseXIO is installed.

The following example shows, how to setup the AND mask, for an external TTL trigger. As an example a simple level detection has been
chosen. The explanation and a detailed description of the different trigger modes for the external TTL trigger inputs will be shown in the ded-
icated passage within this chapter.

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ANDMASK, SPC_TMASK EXTO) ; // Enable external trigger within the AND mask
spcm dwSetParam i32 (hDrv,SPC TRIG EXTO MODE, SPC TM HIGH); // Setting up external TTL trigger for HIGH level

The table below is showing the constants for the channel AND mask and all the constants for the different channels.

Register Value Direction Description
SPC_TRIG_CH_AVAILANDASKO 40470 read Bitmask, in which all bits of the below mentioned sources/channels (0...31) for the channel AND
mask are set, if available.
SPC_TRIG_CH_AVAILANDMASK 1 40471 read Bitmask, in which all bits of the below mentioned sources/ channels (32...63) for the channel AND
mask are set, if available.
SPC_TRIG_CH_ANDMASKO 40480 read/write Includes the analog or digital channels (0...31) within the channel trigger AND mask of the card.
SPC_TRIG_CH_ANDRMASK 40481 read/write Includes the analog or digital channels (32...63) within the channel trigger AND mask of the card.
SPC_TMASKO_CHO 1h Enables channelO (channel16) for recognition within the channel AND mask.
SPC_TMASKO_CH1 2h Enables channell (channel17) for recognition within the channel AND mask.
SPC_TMASKO_CH2 4h Enables channel2 (channel18) for recognition within the channel AND mask.
SPC_TMASKO_CH3 8h Enables channel3 (channel19) for recognition within the channel AND mask.
SPC_TMASKO_CH28 10000000h | Enables channel28 (channel60) for recognition within the channel AND mask.
SPC_TMASKO_CH29 20000000h | Enables channel29 (channel61 for recognition within the channel AND mask.
SPC_TMASKO_CH30 40000000h | Enables channel30 (channel62) for recognition within the channel AND mask.
SPC_TMASKO_CH31 80000000h | Enables channel31 (channelé3) for recognition within the channel AND mask.

The following example shows, how to setup the AND mask, for an external TTL trigger. As an example a simple level defection has been
chosen. The explanation and a detailed description of the different trigger modes for the external TTL trigger inputs will be shown in the ded-
icated passage within this chapter.

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_CH_ANDMASKO, SPC_TMASK CHO) ; // Enable channelO trigger within the AND mask
spcm dwSetParam i32 (hDrv, SPC_TRIG EXTO0 MODE, SPC TM HIGH); // Setting up chO trigger for HIGH levels

78 M2i.20xx / M2i.20xx-exp Manual

Trigger modes and appendant registers Software trigger

Software trigger

The software trigger is the easiest way of triggering any Spectrum
board. The acquisition or replay of data will start immediately af-

. . Board
ter starting the board. The only delay results from the time the sehup fime

board nee.zds for its setup. ' . . START Triggerevent
For enabling the software trigger one simply has to include the

s . . command
software event within the trigger OR mask, as the following table
is showing:
Register Value Direction Description
SPC_TRIG_ORMASK 40410 read/write Defines the events included within the trigger OR mask of the card.
I SPC_TMASK_SOFTWARE 1h Sets the trigger mode to software, so that the recording/replay starts immediately.

Due to the fact that the software trigger is an internal trigger mode, you can optionally enable the external trigger output to generate a high
active trigger signal, which indicates when the data acquisition or replay begins. This can be useful to synchronize external equipment with
your Spectrum board.

Register Value Direction Description
SPC_TRIG_OUTPUT 40100 read/write Defines the data direction of the external trigger connector.
0 The frigger connector is not used and the line driver is disobzd.
1 The trigger connector is used as an output that indicates a detected internal trigger event.

Example for setting up the software trigger:

spcm_dwSetParam i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_SOFTWARE) ; // Internal software trigger mode is used
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_OUTPUT, 1):; // And the trigger output is enabled

Force- and Enable trigger

In addition to the softwaretrigger (free run) it is also possible to force a triggerevent by software while the board is waiting for an internal or
external trigger event. The forcetrigger command will only have any effect, when the board is waiting for a trigger event. The command for
forcing a trigger event is shown in the table below.

Register Value Direction Description
SPC_M2CMD 100 write Command register of the M2i series cards.
I M2CMD_CARD_FORCETRIGGER 10h Forces a trigger event if the hardware is still waiting for a trigger event.

The example shows, how to use the forcetrigger command:

spcm_dwSetParem 132 (hDrv, SPC _M2CMD, M2CMD CARD FORCETRIGGER); // Forcetrigger is used.

It is also possible to enable (arm) or disable (disarm) the card’s whole triggerengine by software. By default the trigger engine is enabled.

Register Value Direction Description

SPC_M2CMD 100 write Command register of the M2i series cards.
M2CMD_CARD_ENABLETRIGGER | 8h Enables the trigger engine. Any trigger event will now be recognized.
M2CMD_CARD_DISABLETRIGGER | 20h Disables the trigger engine. No trigﬁ)er events will be recognized.

The example shows, how to arm and disarm the card’s trigger engine properly:

spcm_dwSetParem i32 (hDrv, SPC_M2CMD, M2CMD_CARD_ENABLETRIGGER); // Trigger engine is armed.

spcm dwSetParem i32 (hDrv, SPC M2CMD, M2CMD CARD DISABLETRIGGER); // Trigger engine is disarmed.

Delay trigger

All of the Spectrum M2i series cards allow the user to program an additional trigger delay. As shown in the trigger overview section, this
delay is the last element in the trigger chain. Therefore the user does not have to care for the sources when programming the trigger delay.
The following table shows the related register and the possible values. A value of O disables the extra delay. The resulting delays (due to the

(c) Spectrum GmbH 79

External TTL trigger Trigger modes and appendant registers

internal structure of the card) can be found in the technical data section of this manual.

Register Value Direction Description

SPC_TRIG_AVAILDELAY 40800 read Contains the maximum available delay as a decimal integer value.

SPC_TRIG_DELAY 40810 read/write Defines the delay for the detected trigger events.
0 No additional delay will be added. The resulting inte:ol delay is mentioned in the technical data section.
0...65535 Defines the additional Irigger delay in number of sample clocks.

The example shows, how to use the delay trigger command:

spcm_dwSetParem i32 (hDrv, SPC_TRIG_DELAY, 2000); // A detected trigger event will be
// delayed for 2000 sample clocks.

External TTL trigger

Enabling the external trigger input(s) is done, if you choose one of the following external trigger modes. The dedicated register for that op-
eration is shown below.

Register Value Direction Description
SPC_TRIG_EXT_AVAILMODES 40500 read Bitmask, in which all bits of the below mentioned modes for the external trigger are set, if available.
SPC_TRIG_EXTO_MODE 40510 read/write Defines the external TTL trigger mode for the external SMB connector (A/D and D/A boards only).
On digital boards this defines the TTL trigger mode for the trigger input of the first module (Mod A).
SPC_TRIG_EXT1_MODE 40511 read/write Defines the external TTL trigger mode for the trigger input of the second module (digital boards only).
SPC_TRIG_XIOO_MODE 40560 read/write Defines the trigger mode for the extra TTL input O. These trigger inputs are only available, when
option BaseXIO is installed.
SPC_TRIG_XIO1_MODE 40561 read/write Defines the trigger mode for the extra TTL input 1. These trigger inputs are only available, when
option BaseXIO is installed.
SPC_TM_POS 1h Sets the trigger mode for external TTL trigger to detect positive edges.
SPC_TM_NEG 2h Sets the trigger mode for external TTL trigger to detect negative edges
SPC_TM_BOTH 4h Sets the trigger mode for external TTL trigger to detect positive and negative edges
SPC_TM_HIGH 8h Sets the trigger mode for external TTL trigger to detect HIGH levels.
SPC_TM_LOW 10h Sets the trigger mode for external TTL trigger to detect LOW levels.
SPC_TM_POS | 4000001h Sets the trigger mode for external TTL trigger to detect HIGH pulses that are longer than a programmed pulsewidth.
SPC_TM_PW_GREATER
SPC_TM_POS | 2000001h Sets the trigger mode for external TTL trigger to detect HIGH pulses that are shorter than a programmed pulsewidth.
SPC_TM_PW_SMALLER
SPC_TM_NEG | 4000002h Sets the trigger mode for external TTL trigger to detect LOW pulses that are longer than a programmed pulsewidth.
SPC_TM_PW_GREATER
SPC_TM_NEG | 2000002h Sets the trigger mode for external TTL trigger to detect LOW pulses that are shorter than a programmed pulsewidth.
SPC_TM_PW_SMALLER

For all external edge and level trigger modes, the OR mask must contain the corresponding input, as the following table shows:

Register Value Direction Description
SPC_TRIG_ORMASK 40410 read/write Defines the OR mask for the different trigger sources.
I SPC_TMASK_EXTO 2h Enable external trigger input for the OR mask

If you choose an external trigger mode the SPC_TRIGGEROUT register will be overwritten and the trigger connector will be used as an input
any ways.

Register Value Direction Description
SPC_TRIG_OUTPUT 40100 read/write Enables the trigger output if internal trigger is detected
X If external trigger modes are used, this register will have no effect.

As the trigger connector is used as an input, you can decide whether the input is 50 Ohm terminated or not. If you enable the termination,
please make sure, that your trigger source is capable to deliver the needed current. Please check carefully whether the source is able to fulfil
the trigger input specification given in the technical data section. If termination is disabled, the input is at high impedance.

Register Value Direction Description

SPC_TRIG_TERM 40110 read/write A 1" sets the 50 Ohm termination, if the trigger connector is used as an input for external trigger sig-
nals. A 0" sets the high impedance termination

80 M2i.20xx / M2i.20xx-exp Manual

Trigger modes and appendant registers External TTL trigger

The following short example shows how to set up the board for external positive edge TTL trigger. The trigger input is 50 Ohm terminated.
The different modes for external TTL trigger are to be detailed described in the next few passages.

spcm_dwSetParam i32 (hDrv,SPC_TRIG_EXTO0_ MODE, SPC_TM POS); // Setting up external TTL

// trigger to detect rising edges
spcm_dwSetParam i32 (hDrv, SPC TRIG TERM, 1) ; // Enables the 50 Ohm input termination
spcm_dwSetParam i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_EXTO) ; // and enable it within the OR mask

Edge and level triggers

Rising edge TTL trigger

This mode is for detecting the rising edges of an external TTL sig- Start
nal. The board will trigger on the first rising edge that is detected :
after starting the board. The next triggerevent will then be detect- !
|
|
|

ed, if the actual recording/replay has finished and the board is
armed and waiting for a trigger again.

Triggerevent

Register Value Direction Description
SPC_TRIG_EXTO_MODE 40510 read/write Sets the external trigger mode for the board.
—
I SPC_TM_POS 1h Sets the trigger mode for external TTL trigger to detect positive edges.

Example on how to set up the board for positive TTL trigger:

SpcSetParam (hDrv, SPC_TRIGGERMODE, TM_TTLPOS); // Setting up external TTL trigger to detect positive edges

HIGH level TTL trigger

This mode is for detecting the HIGH levels of an external TTL sig- Start
nal. The board will trigger on the first HIGH level that is detected :
after starting the board. If this condition is fulfilled when the board !
is started, a trigger event will be detected. :
The next triggerevent will then be detected, if the actual record- !
ing/replay has finished and the board is armed and waiting for
a trigger again.

Triggerevent

Register Value Direction Description
SPC_TRIG_EXTO_MODE 40510 read/write Sets the external trigger mode for the board.
I SPC_TM_HIGH 8h Sets the trigger mode for external TTL trigger to detect HIGH levels.
— —

Negative TTL trigger

This mode is for detecting the falling edges of an external TTL sig- Start
nal. The board will trigger on the first falling edge that is detected |
after starting the board. The next triggerevent will then be detect- !
|
|
L

ed, if the actual recording/replay has finished and the board is

oy . . Y
armed and waiting for a trigger again.

Triggerevent

Register Value Direction Description
SPC_TRIG_EXTO_MODE 40510 read/write Sets the external trigger mode for the board.
I SPC_TM_NEG 2h Sets the trigger mode for external TTL trigger to detect negative edges.
— —

(c) Spectrum GmbH 81

External TTL trigger Trigger modes and appendant registers

LOW level TTL trigger

This mode is for defecting the LOW levels of an external TTL sig- Start
nal. The board will trigger on the first LOW level that is detected |
after starting the board. If this condition is fulfilled when the board !
is started, a trigger event will be detected. |
The next triggerevent will then be detected, if the actual record- !
ing/replay has finished and the board is armed and waiting for _ |

i i Triggerevent
a trigger again.

Register Value Direction Description
SPC_TRIG_EXTO_MODE 40510 read/write Sets the external trigger mode for the board.
—
I SPC_TM_LOW 10h Sets the trigger mode for external TTL trigger to detect LOW levels.

Positive and negative TTL trigger

This mode is for detecting the rising and falling edges of an ex-
ternal TTL signal. The board will trigger on the first rising or falling fy
edge that is detected after starting the board. The next trigger-
event will then be detected, if the actual recording/replay has fin-
ished and the board is armed and waiting for a trigger again.

Triggerevent Triggerevent

Register Value Direction Description
SPC_TRIG_EXTO_MODE 40510 read/write Sets the external trigger mode for the board.
—

I SPC_TM_BOTH 4h Sets the trigger mode for external TTL trigger to detect positive and negative edges.
— —

Pulsewidth triggers

TTL pulsewidth trigger for long HIGH pulses

This mode is for detecting HIGH pulses of an external TTL signal
that are longer than a programmed pulsewidth. If the pulse is
shorter than the programmed pulsewidth, no trigger will be de-
tected. The board will frigger on the first pulse matching the trig-
ger condition after starting the board. The next triggerevent will
then be detected, if the actual recording/replay has finished and
the board is armed and waiting for a trigger again.

-—] -—»|
Pulsewidth Pulsewidth

Triggérevenf

Register Value Direction set to Value
SPC_TRIG_EXTO_PULSEWIDTH 44210 read/write Sets the pulsewidth in samples. 2 up to 65535
SPC_TRIG_EXTO_MODE 40510 read/write (SPC_TM_POS | SPC_TM_PW_GREATER) 4000001h

TTL pulsewidth trigger for short HIGH pulses

This mode is for detecting HIGH pulses of an external TTL signal
that are shorter than a programmed pulsewidth. If the pulse is .
longer than the programmed pulsewidth, no trigger will be detect- E
ed. The board will trigger on the first pulse matching the trigger

condition after starting the board. The next triggerevent will then
be defected, if the actual recording/replay has finished and the
board is armed and waiting for a trigger again.

B — |4——>i
Pulsewidth Pulsewidth

Triggerevent

Register Value Direction set to Value
SPC_TRIG_EXTO_PULSEWIDTH 44210 read/write Sets the pulsewidth in samples. 2 up to 65535

SPC_TRIG_EXTO_MODE 40510 read/write (SPC_TM_POS | SPC_TM_PW_SMALLER) 2000001h

82 M2i.20xx / M2i.20xx-exp Manual

Trigger modes and appendant registers

Channel Trigger

TTL pulsewidth trigger for long LOW pulses

This mode is for detecting LOW pulses of an external TTL signal
that are longer than a programmed pulsewidth. If the pulse is
shorter than the programmed pulsewidth, no trigger will be de-
tected. The board will frigger on the first pulse matching the trig-
ger condition after starting the board. The next triggerevent will
then be detected, if the actual recording/replay has finished and

the board is armed and waiting for a trigger again.

D mm—]
Pulsewidth

|4—>!

Psewidth |

Triggérevenf

Register Value Direction set to Value
SPC_TRIG_EXTO_PULSEWIDTH 44210 read/write Sets the pulsewidth in samples. 2 up to 65535
SPC_TRIG_EXTO_MODE 40510 read/write (SPC_TM_NEG | SPC_TM_PW_GREATER) 4000002h

TTL pulsewidth trigger for short LOW pulses

This mode is for detecting LOW pulses of an external TTL signal

that are shorter than a programmed pulsewidth. If the pulse is

longer than the programmed pulsewidth, no trigger will be detect-

ed. The board will trigger on the first pulse matching the trigger

condition after starting the board. The next triggerevent will then : i

be detected, if the actual recording/replay has finished and the I —— |‘—_’

board is armed and waiting for a trigger again. bl e

Triggerevent

Register Value Direction set to Value
SPC_TRIG_EXTO_PULSEWIDTH 44210 read/write Sets the pulsewidth in samples. 2 up to 65535
SPC_TRIG_EXTO_MODE 40510 read/write (SPC_TM_NEG | SPC_TM_PW_SMALLER) 2000002h

The following example shows, how to setup the card for using external TTL pulse width trigger:

spcm dwSetParam i32 (hDrv, SPC_TRIG EXTO MODE, SPC TM NEG | SPC TM PW GREATER); // Setting up external TTL
// trigger to detect low pulses
50); // that are longer than 50 samples.
SPC_TMASK EXTO0); // and enable it within the OR mask

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_EXTO_ PULSEWIDTH ,
spcm_dwSetParam i32 (hDrv, SPC_TRIG ORMASK,

To find out, what maximum pulsewidth (in samples) is available, please read out the register shown in the table below:

Register Value Direction
SPC_TRIG_EXT_AVAILPULSEWIDTH 44200 read

Description

Contains the maximum possible value, for the external trigger pulsewidth counter.
—

Channel Trigger

Overview of the channel trigger registers

The channel trigger modes are the most common modes, compared to external equipment like oscilloscopes. The 19 different channel trigger
modes enable you to observe nearly any part of the analog signal. This chapter is about to explain the different modes in detail. To enable
the channel trigger, you have to set the channel triggermode register accordingly. Therefore you have to choose, if you either want only one
channel to be the trigger source, or if you want to combine two or more channels to a logical OR or a logical AND trigger.

For all channel trigger modes, the OR mask must contain the corresponding input channels (channel O taken as example here):.

Register Value Direction Description
SPC_TRIG_CH_ORMASKO 40460 read/write Defines the OR mask for the channel trigger sources.
I SPC_TMASKO_CHO 1h Enables channelO input for the channel OR mask

The following table shows the according registers for the two general channel trigger modes. It lists the maximum of the available channel
mode registers for your card’s series. So it can be that you have less channels installed on your specific card and therefore have less valid
channel mode registers. If you try to set a channel, that is not installed on your specific card, a error message will be returned.

(c) Spectrum GmbH 83

Channel Trigger

Trigger modes and appendant registers

Register Value Direction Description
SPC_TRIG_CH_AVAILMODES 40600 read Bitmask, in which all bits of the below mentioned modes for the channel trigger are set, if available.
SPC_TRIG_CHO_MODE 40610 read/write Sets the trigger mode for channel 0. Channel O must be enabled in the channel OR/AND mask.
SPC_TRIG_CH1_MODE 40611 read/write Sets the trigger mode for channel 1. Channel 1 must be enabled in the channel OR/AND mask.
SPC_TRIG_CH2_MODE 40612 read/write Sets the trigger mode for channel 2. Channel 2 must be enabled in the channel OR/AND mask.
SPC_TRIG_CH3_MODE 40613 read/write Sets the trigﬁ;er mode for channel 3. Channel 3 must be enabled in the channel OR/AND mask.

SPC_TM_NONE Oh Channel is not used for trigger detection. This is as with the trigger masks another possibility for disabling channels.

SPC_TM_POS 1h Enables the trigger detection for positive edges

SPC_TM_NEG 2h Enables the trigger detection for negative edges

SPC_TM_BOTH 4h Enables the trigger detection for positive and negative edges

SPC_TM_HIGH 8h Enables the trigger detection for HIGH levels

SPC_TM_LOW 10h Enables the trigger detection for LOW levels

SPC_TM_POS | SPC_TM_PW_GREATER | 4000001h Enables the pulsewidth trigger detection for long positive pulses

SPC_TM_NEG | SPC_TM_PW_GREATER | 4000002h Enables the pulsewidth trigger detection for long negative pulses

SPC_TM_POS | SPC_TM_PW_SMALLER 2000001h Enables the pulsewidth trigger detection for short positive pulses

SPC_TM_NEG | SPC_TM_PW_SMALLER | 2000002h Enables the pulsewidth trigger detection for short negative pulses

SPC_TM_STEEPPOS | 4000800h Enables the steepness trigger detection for flat positive pulses

SPC_TM_PW_GREATER

SPC_TM_STEEPNEG | 4001000h Enables the steepness trigger detection for flat negative pulses

SPC_TM_PW_GREATER

SPC_TM_STEEPPOS | 2000800h Enables the steepness trigger detection for steep positive pulses

SPC_TM_PW_SMALLER

SPC_TM_STEEPNEG | 2000800h Enables the steepness trigger detection for steep negative pulses

SPC_TM_PW_SMALLER

SPC_TM_WINENTER 20h Enables the window trigger for entering signals

SPC_TM_WINLEAVE 40h Enables the window trigger for leaving signals

SPC_TM_INWIN 80h Enables the window trigger for inner signals

SPC_TM_OUTSIDEWIN 100h Enables the window trigger for outer signals

SPC_TM_WINENTER | 4000020h Enables the window trigger for long inner signals

SPC_TM_PW_GREATER

SPC_TM_WINLEAVE | 4000040h Enables the window trigger for long outer signals

SPC_TM_PW_GREATER

SPC_TM_WINENTER | 2000020h Enables the window trigger for short inner signals

SPC_TM_PW_SMALLER

SPC_TM_WINLEAVE | 2000040h Enables the window trigger for short outer signals

SPC_TM_PW_SMALLER

If you want to set up a four channel board to detect only a positive edge on channel 0, you would have to setup the board like the following
example. Both of the examples either for the TM_CHANNEL and the TM_CHOR trigger mode do not include the necessary seftings for the
trigger levels. These settings are detailed described in the following paragraphs.

spcm_dwSetParam i32 (hDrv,

SPC_TRIG_CH ORMASKO,
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_CHO_MODE, SPC_TM POS);

// Enable channel 0 in the OR mask
// Set triggermode of channel 0 to positive edge

SPC_TMASKO_CHO) ;

If you want to set up a four channel board to detect a trigger event on either a positive edge on channel 1 or a negative edge on channel 3
you would have to set up your board as the following example shows.

spcm_dwSetParam_ i32
spcm_dwSetParam 132
spcm_dwSetParam i32

(hDrv,

SPC_TRIG_CH_ORMASKO,
(hDrv, SPC_TRIG_CH1 MODE, SPC_TM POS);
(hDrv, SPC_TRIG CH3 MODE, SPC_TM NEG);

SPC_TMASKO_CH1 | SPC_TMASKO_CH3); // Enable channel 1 + 3
// Set triggermode of channel 1 to positive edge
// Set triggermode of channel 3 to negative edge

Trigger level

All of the channel trigger modes listed above require at least one trigger level to be set (except SPC_TM_NONE of course). Some like the
window triggers require even two levels (upper and lower level) to be set.

After the data has been sampled, the upper N data bits are compared with the N bits of the trigger levels. The following table shows the level
registers and the possible values they can be set to for your specific card.

As the trigger levels are compared to the digitized data, the trigger levels depend on the channels input range. For every input range available
to your board there is a corresponding range of trigger levels. On the different input ranges the possible stepsize for the trigger levels differs
as well as the maximum and minimum values. The table further below gives you the absolute trigger levels for your specific card series.

84

M2i.20xx / M2i.20xx-exp Manual

Trigger modes and appendant registers Channel Trigger

8 bit resolution for the trigger levels:

Register Value Direction Description Range

SPC_TRIG_CHO_LEVELO 42200 read/write Trigger level O channel O: main trigger level / upper level if 2 levels used -127 to +127
SPC_TRIG_CH1_LEVELO 42201 read/write Trigger level O channel 1: main trigger level / upper level if 2 levels used -127 to +127
SPC_TRIG_CH2_LEVELO 42202 read/write Trigger level O channel 2: main trigger level / upper level if 2 levels used -127 to +127
SPC_TRIG_CH3_LEVELO 42203 read/ write Trigger level O channel 3: main trigger level / upper level if 2 levels used -127 to +127
SPC_TRIG_CHO_LEVEL1 42300 read/write Trig-ger level 1 channel 0: auxiliary trigger level / lower level if 2 levels used | -127 to +127
SPC_TRIG_CH1_LEVEL1 42301 read/write Trigger level 1 channel 1: auxiliary trigger level / lower level if 2 levels used 127 to +127
SPC_TRIG_CH2_LEVEL1 42302 read/write Trigger level 1 channel 2: auxiliary trigger level / lower level if 2 levels used 2127 to +127
SPC_TRIG_CH3_LEVEL1 42303 read/write Trigger level 1 channel 3: auxiliary trig_ger level / lower level if 2 levels used -127 to +127

Trigger level representation depending on selected input range

Input ranges

Triggerlevel 50 mV 100 mV 3200 mV 500 mV 1V 2V 5V

127 49,6 mV 99,2 mV 198,4 mV 496,1 mV 992,2mV | 1.984,4mV | 4.960,9 mV
126 49,2 mV 98,4 mV 196,9 mV 492,2 mV 984,4mV | 1.968,8mV | 4.921,9 mV
64 25,0 mV 50,0 mV 100,0 mV 250,0 mV 500,0mV | 1.000,0mV [2.500,0 mV
2 0,8 mV 1,6 mV 3,1 mV 7,8 mV 15,6 mV 31,3 mV 78,1 mV
1 0,4 mV 0,8 mV 1,6 mV 3,9 mV 7,8 mV 15,6 mV 39,1 mV
0 0,0 mV 0,0 mV 0,0 mV 0,0 mV 0,0 mV 0,0 mV 0,0 mV
-1 0,4 mV 0,8 mV -1,6 mV 3,9 mV 7,8 mV -15,6 mV 39,1 mV
2 0,8 mV -1,6 mV 3,1 mV 7,8 mV -15,6 mV 31,3 mV 78,1 mV
-64 25,0 mV -50,0 mV -100,0 mV -250,0 mV -500,0 mV | -1.000,0 mV | -2.500,0 mV
-126 49,2 mV 98,4 mV -196,9 mV -492,2 mV 984,4mV | -1.968,8 mV | -4.921,9 mV
-127 -49,6 mV 99,2 mV -198,4 mV -496,1 mV 992,2mV | -1.984,4mV | -4.960,0 mV
Stepsize 0.4 mV 0.8 mV 1.6 mV 3.9 mV 7.8 mV 15,6 mV 39.1 mV

The following example shows, how to set up a one channel board to trigger on channel O with rising edge. It is assumed, that the input range
of channel O is set to the the +200 mV range. The decimal value for SPC_TRIG_CHO_LEVELO corresponds then with 12.5 mV, which is the
resulting trigger level.

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_CHO_MODE, SPC_TM _POS); // Setting up channel trig (rising edge)
spcm_dwSetParam 132 (hDrv, SPC_TRIG_CHO_LEVELO, 40); // Sets triggerlevel to 62.5 mV
spcm_dwSetParam i32 (hDrv, SPC_TRIG_CH_ORMASKO, SPC_TMASKO_CHO) ; // and enable it within the OR mask

Reading out the number of possible trigger levels

The Spectrum driver also contains a register, that holds the value of the maximum possible different trigger levels considering the above men-
tioned exclusion of the most negative possible value. This is useful, as new drivers can also be used with older hardware versions, because
you can check the trigger resolution during run time. The register is shown in the following table:

Register Value Direction Description
SPC_READTRGLVLCOUNT 2500 r Contains the number of different possible trigger levels.

In case of a board that uses 8 bits for trigger detection the returned value would

be 255, as either the zero and 127 positive and negative values are possi- Trigger step width =
ble.The resulting trigger step width in mV can easily be calculated from the re-

turned value. It is assumed that you know the actually selected input range.

Input Range . . —Input Range ..

Number of trigger levels + 1

To give you an example on how to use this formula we assume, that the)) +1000 mV — 1000 mV!
£1.0 V input range is selected and the board uses 8 bits for trigger detection. Trigger step width = 255 _E_ 1)
The result would be 7.81 mV, which is the step width for your type of board

within the actually chosen input range.

Pulsewidth counter

Some of the trigger modes need an additional pulsewidth counter that is measuring the size of a pulse. All the trigger modes running with
pulse width counters are able to detect a trigger event that is shorter than the programmed pulsewidth or that is longer than the programmed
pulsewidth. Please see the detailed trigger mode description for further details.

(c) Spectrum GmbH 85

Channel Trigger Trigger modes and appendant registers

To find out what maximum pulsewidth (in samples) is available for all the channel trigger modes it is possible to read out the maximum pro-
grammable pulsewidth counter using the register shown in the table below:

Register Value Direction Description
SPC_TRIG_CH_AVAILPULSEWIDTH 44100 r Contains the maximum possible value, for the channel trigger pulsewidth counter.

Each channel trigger has it's own pulsewidth register:

Register Value Direction Description Range

SPC_TRIG_CHO_PULSEWIDTH 44101 read/write Sets the pulsewidth in samples for ch O trigger modes using pulsewidth counters | 2 to 65535
SPC_TRIG_CH1_PULSEWIDTH 44102 read/write Sets the pulsewidth in samples for ch 1 trigger modes using pulsewidth counters | 2 to 65535
SPC_TRIG_CH2_PULSEWIDTH 44103 read/write Sets the pulsewidth in samples for ch 2 trigger modes using pulsewidth counters | 2 to 65535
SPC_TRIG_CH3_PULSEWIDTH 44104 read/write Sets the pulsewidth in samples for ch 3 trigger modes using pulsewidth counters | 2 to 65535

Please keep in mind that your card only has one channel pulsewidth counter available in hardware. It is not
possible to use more than one channel trigger source when activating a pulsewidth trigger mode. The driver
will then report an error.

86 M2i.20xx / M2i.20xx-exp Manual

Trigger modes and appendant registers

Channel Trigger

Detailed description of the channel trigger modes

For all channel trigger modes, the OR mask must contain the corresponding input channels (channel O taken as example here):.

Register Value Direction Description
SPC_TRIG_CH_ORMASKO 40460 read/write Defines the OR mask for the channel trigger sources.
I SPC_TMASKO_CHO 1h Enables channelO input for the channel OR mask

Channel trigger on positive edge

The analog input is continuously sampled with the selected
sample rate. If the programmed trigger level is crossed by
the channel’s signal from lower values to higher values (ris-
ing edge) then the triggerevent will be detected.

TN Triggerevel /7 N\
\
— | .
These edge triggered channel trigger modes correspond to ~ /!/ _
the trigger possibilities of usual oscilloscopes. | t
[
|
| .
| —
|
Triggerevent
Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_POS Th
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant

Channel trigger on negative edge

The analog input is continuously sampled with the selected
sample rate. If the programmed trigger level is crossed by
the channel’s signal from higher values to lower values (fall-
ing edge) then the triggerevent will be detected.

These edge triggered channel trigger modes correspond fo

the trigger possibilities of usual oscilloscopes.

N Triggerevel /7 ™\
1
1
]
1
1
1
I
]

Triggerevent

Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_NEG 2h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant

Channel trigger on positive and negative edge

The analog input is continuously sampled with the selected
sample rate. If the programmed trigger level is crossed by
the channel’s signal (either rising or falling edge) the trig-
gerevent will be detected.

These edge triggered channel trigger modes correspond fo

7/; _ _'_\,K_ _ _Triggerlevel ____ /7 7\

the trigger possibilities of usual oscilloscopes.

Triggerevent

Triggerevent

Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_BOTH 4h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant

(c) Spectrum GmbH

87

Channel Trigger

Trigger modes and appendant registers

Channel re-arm trigger on positive edge

The analog input is continuously sampled with the selected
sample rate. If the programmed re-arm level is crossed from
lower to higher values, the trigger engine is armed and
waiting for trigger. If the programmed trigger level is
crossed by the channel’s signal from lower values to higher
values (rising edge) then the triggerevent will be defected
and the trigger engine will be disarmed. A new trigger
event is only detected if the trigger engine is armed again.

The re-arm trigger modes can be used to prevent the board
from triggering on wrong edges in noisy signals.

Triggerevent

| >
e XY/———F —————————— t
re-arm |eve|

Triggerevent

Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_POS | SPC_TM_REARM 01000001h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant
SPC_TRIG_CHO_LEVEL1 42300 read/write Defines the re-arm level relatively to the channels’s input range board dependant

Channel re-arm trigger on negative edge

The analog input is continuously sampled with the selected
sample rate. If the programmed re-arm level is crossed from
higher to lower values, the trigger engine is armed and
waiting for trigger. If the programmed trigger level is
crossed by the channel’s signal from higher values to lower
values (falling edge) then the triggerevent will be detected
and the trigger engine will be disarmed. A new trigger
event is only detected, if the trigger engine is armed again.

The re-arm trigger modes can be used to prevent the board
from triggering on wrong edges in noisy signals.

7%9;;,7;;‘\\:\“ / NS

i
|
Triggerevent

Triggerevent

Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_NEG | SPC_TM_REARM 01000002h
SPC_TRIG_CHO_LEVELO 42200 read/write Defines the re-arm level relatively to the channels’s input range board dependant
SPC_TRIG_CHO_LEVEL1 42300 read/write Set it to the desired trig_ger level relatively to the channel’s input range. board dependant

Channel pulsewidth trigger for long positive pulses

The analog input is continuously sampled with the selected
sample rate. If the programmed trigger level is crossed by
the channel’s signal from lower to higher values (rising
edge) the pulsewidth counter is started. If the signal crosses
the trigger level again in the opposite direction within the
the programmed pulsewidth time, no trigger will be defect
ed. If the pulsewidth counter reaches the programmed
amount of samples, without the signal crossing the trigger
level in the opposite direction, the triggerevent will be de-
tected.

The pulsewidth trigger modes for long pulses can be used
to prevent the board from triggering on wrong (short) edges
in noisy signals.

Triggerleve! " _:\

Triggerevent

. J

Register Value Direction

set to

Value

SPC_TRIG_CHO_MODE 40610 read/write

SPC_TM_POS | SPC_TM_PW_GREATER

04000001h

SPC_TRIG_CHO_LEVELO

42200

read/write

Set it to the desired trigger level relatively to the channel’s input range.

board dependant

SPC_TRIG_CHO_PULSEWIDTH

44101

read/write

Sets the pulsewidth in samples. Values from 2 to 65535 are allowed.

2 to 65535

88

M2i.20xx / M2i.20xx-exp Manual

Trigger modes and appendant registers

Channel Trigger

Channel pulsewidth trigger for long negative pulses

The analog input is continuously sampled with the selected
sample rate. If the programmed trigger level is crossed by
the channel’s signal from higher to lower values (falling
edge) the pulsewidth counter is started. If the signal crosses
the trigger level again in the opposite direction within the
the programmed pulsewidth time, no trigger will be defect

ed. If the pulsewidth counter reaches the programmed L ___\7/_ ____________________ Triggerlevel _XR_ 4
amount of samples, without the signal crossing the trigger _/
level in the opposite direction, the triggerevent will be de- ro— —
tected. W W
1
The pulsewidth trigger modes for long pulses can be used Triggerevent
to prevent the board from triggering on wrong (short) edges
in noisy signals.
Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_NEG | SPC_TM_PW_GREATER 04000002h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant
SPC_TRIG_CHO_PULSEWIDTH 44101 read/write Sets the pulsewidth in samples. Values from 2 to 65535 are allowed. 2 to 65535
Channel pulsewidth trigger for short positive pulses
The analog input is continuously sampled with the selected v v
sample rate. If the programmed trigger level is crossed by -— > «—>

the channel’s signal from lower to higher values (rising
edge) the pulsewidth counter is started. If the pulsewidth
counter reaches the programmed amount of samples, no
trigger will be detected.

If the signal does cross the trigger level again within the the
programmed pulsewidth time, a triggerevent will be detect-
ed.

|
|
i
1
1
I
I
I
|
|
|

|
Triggerevent

. J

Register Value Direction

set to

Value

SPC_TRIG_CHO_MODE 40610

read/write

SPC_TM_POS | SPC_TM_PW_SMALLER

02000001h

SPC_TRIG_CHO_LEVELO 42200

read/write

Set it to the desired trigger level relatively to the channel’s input range.

board dependant

SPC_TRIG_CHO_PULSEWIDTH 44101

read/write

Sets the pulsewidth in samples. Values from 2 to 65535 are allowed.

2 to 65535

Channel pulsewidth trigger for short negative pulses

The analog input is continuously sampled with the selected
sample rate. If the programmed trigger level is crossed by
the channel’s signal from higher to lower values (falling
edge) the pulsewidth counter is started. If the pulsewidth
counter reaches the programmed amount of samples, no
trigger will be detected.

If the signal does cross the trigger level again within the the
programmed pulsewidth time, a triggerevent will be defect-
ed.

Triggerevent

Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_NEG | SPC_TM_PW_SMALLER 02000002h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant
SPC_TRIG_CHO_PULSEWIDTH 44101 read/write Sets the pulsewidth in samples. Values from 2 to 65535 are allowed. 2 to 65535

(c) Spectrum GmbH

89

Channel Trigger

Trigger modes and appendant registers

Channel steepness trigger for flat positive pulses

The analog input is continuously sampled with the selected
sample rate. If the programmed lower level is crossed by
the channel’s signal from lower to higher values (rising
edge) the pulsewidth counter is started. If the signal does
cross the upper level within the the programmed pulsewidth
time, no trigger will be detected.

If the pulsewidth counter reaches the programmed amount
of samples a triggerevent will be defected.

PW PW
- -
upper level - _“\\
/ s
] >
_____ - ______l___l__l ~ = B~~~
ower leve
- ~— //

Triggerevent

Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_STEEPPOS | SPC_TM_PW_GREATER 04000800h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependant
SPC_TRIG_CHO_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel’s input range. board dependant
SPC_TRIG_CHO_PULSEWIDTH 44101 read/write Sets the pulsewidth in samples. Values from 2 to 65535 are allowed. 2 to 65535

Channel steepness trigger for flat negative pulses

The analog input is continuously sampled with the selected
sample rate. If the programmed upper level is crossed by
the channel’s signal from higher to lower values (falling
edge) the pulsewidth counter is started. If the signal does
cross the lower level within the the programmed pulsewidth
time, no trigger will be detected.

If the pulsewidth counter reaches the programmed amount
of samples a triggerevent will be defected.

|Uwer |eve|

Triggerevent

Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_STEEPNEG | SPC_TM_PW_GREATER 04001000h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependant
SPC_TRIG_CHO_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel’s input range. board dependant
SPC_TRIG_CHO_PULSEWIDTH 44101 read/write Sets the pulsewidth in samples. Values from 2 to 65535 are allowed. 2 to 65535

Channel steepness trigger for steep positive pulses

The analog input is continuously sampled with the selected
sample rate. If the programmed lower level is crossed by
the channel’s signal from lower to higher values [rising
edge) the pulsewidth counter is started. If the pulsewidth
counter reaches the programmed amount of samples with-
out the signal crossing the higher level, no trigger will be
defected.

If the signal does cross the upper level within the the pro-
grammed pulsewidth time, a triggerevent will be detected.

Triggerevent

Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_STEEPPOS | SPC_TM_PW_SMALLER 02000800h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependant
SPC_TRIG_CHO_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel’s input range. board dependant
SPC_TRIG_CHO_PULSEWIDTH 44101 read/write Sets the pulsewidth in samples. Values from 2 to 65535 are allowed. 2 to 65535

90

M2i.20xx / M2i.20xx-exp Manual

Trigger modes and appendant registers Channel Trigger

Channel steepness trigger for steep negative pulses

The analog input is continuously sampled with the selected

. Pw PW
sample rate. If the programmed upper level is crossed by -— > -— >
the channel’s signal from higher to lower values (falling . —
edge) the pulsewidth counter is started. If the pulsewidth _/{_'_ >~ wpperlevel N
counter reaches the programmed amount of samples with-
out the signal crossing the lower level, no trigger will be de-

tected. [Seccctc S S —— R--/--- '
ected ~C lower level \\ //

If the signal does cross the lower level within the the pro-

grammed pulsewidth time, a triggerevent will be detected. !
Triggerevent

Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_STEEPNEG | SPC_TM_PW_SMALLER 02001000h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependant
SPC_TRIG_CHO_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel’s input range. board dependant
SPC_TRIG_CHO_PULSEWIDTH 44101 read/write Sets the pulsewidth in samples. Values from 2 to 65535 are allowed. 2 to 65535

Channel window trigger for entering signals

The analog input is continuously sampled with the selected
sample rate. The upper and the lower level define a win-
dow. Every time the signal enters the window from the out- —.

side, a triggerevent will be detected. _____

_____ _jﬁ/_"_""“{" __;______//;‘/_ro;e_rﬂn_veT_____J

Triggerevent Triggerevent Triggerevent
Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_WINENTER 00000020h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependant
SPC_TRIG_CHO_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel’s input range. board dependant
Channel window trigger for leaving signals
The analog input is continuously sampled with the selected
sample rate. The upper and the lower level define a win-
dow. Every time the signal leaves the window from the in- — B
side, a triggerevent will be detected. N _/f _________ upperlevel / f':__‘__
I I
| |
: : ,
“““ I I g
| | I
_ | ower leve] x.______// i
I I I
I I I
| 1 I
| 1 1
Triggerevent Triggerevent Triggerevent
Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_WINLEAVE 00000040h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependant
SPC_TRIG_CHO_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel’s input range. board dependant

(c) Spectrum GmbH 91

Channel Trigger

Trigger modes and appendant registers

Channel window trigger for long inner signals

The analog input is continuously sampled with the selected

sample rate. The upper and the lower levels define a win-

dow. Every time the signal enters the window from the out-
side, the pulsewidth counter is started. If the signal leaves

the window before the pulsewidth counter has stopped, no
trigger will be detected.

|Uwer |eve|

|
If the pulsewidth counter stops and the signal is still inside :
the window, the triggerevent will be detected. |
|
1
Triggerevent
Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_WINENTER | SPC_TM_PW_GREATER 04000020h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependant
SPC_TRIG_CHO_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel’s input range. board dependant
SPC_TRIG_CHO_PULSEWIDTH 44101 read/write Sets the pulsewidth in samples. Values from 2 to 65535 are allowed. 2 to 65535

Channel window trigger for long outer signals

The analog input is continuously sampled with the selected
sample rate. The upper and the lower levels define a win-
dow. Every time the signal leaves the window from the in-
side, the pulsewidth counter is started. If the signal enters
the window before the pulsewidth counter has stopped, no
trigger will be detected.

If the pulsewidth counter stops and the signal is still outside
the window, the triggerevent will be detected.

Triggerevent

Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_WINLEAVE | SPC_TM_PW_GREATER 04000040h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependant
SPC_TRIG_CHO_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel’s input range. board dependant
SPC_TRIG_CHO_PULSEWIDTH 44101 read/write Sets the pulsewidth in samples. Values from 2 to 65535 are allowed. 2 to 65535

Channel window trigger for short inner signals

The analog input is continuously sampled with the selected

sample rate. The upper and the lower levels define a win- \ .‘l,

dow. Every time the signal enters the window from the out- /

\ upper level

side, the pulsewidth counter is started. If the pulsewidth
counter stops and the signal is still inside the window, no
trigger will be detected.

If the signal leaves the window before the pulsewidth
counter has stopped, the triggerevent will be detected.

|Uwer |eve|

Triggerevent

Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_WINENTER | SPC_TM_PW_SMALLER 02000020h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependant
SPC_TRIG_CHO_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel’s input range. board dependant
SPC_TRIG_CHO_PULSEWIDTH 44101 read/write Sets the pulsewidth in samples. Values from 2 to 65535 are allowed. 2 to 65535

92 M2i.20xx / M2i.20xx-exp Manual

Trigger modes and appendant registers Channel Trigger

Channel window trigger for short outer signals

The analog input is continuously sampled with the selected

sampling rate. The upper and the lower levels define a win- PR

dow. Every time the signal leaves the window from the in- B

side, the pulsewidth counter is started. If the pulsewidth _/K_ T~ s 4 _/Z
counter stops and the signal is still outside the window, no

trigger will be detected.

If the signal enters the window before the pulsewidth lower level 5
counter has stopped, the trigger event will be detected.

Triggerevent

Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_WINLEAVE | SPC_TM_PW_SMALLER 02000040h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependant
SPC_TRIG_CHO_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel’s input range. board dependant
SPC_TRIG_CHO_PULSEWIDTH 44101 read/write Sets the pulsewidth in samples. Values from 2 to 65535 are allowed. 2 to 65535

(c) Spectrum GmbH 93

Recording modes Option Multiple Recording/Replay

Option Multiple Recording/Replay

The option Multiple Recording/Replay allows the acquisition/)
generation of data blocks with multiple trigger events without re- Pre:Post

starting the hardware. |_] |z ‘_|
' |

The on-board memory will be divided into several segments of : : .

the same size. Each segment will be filled with data when a trig- Input NnA.nl n{\ i .. r‘[nf\ i

ger event occurs (acquisition mode) or replay data of one seg- LA UiV VAR

ment (replay mode),

Trigger

Memory

an-NNnA. nINnN. 0
As this mode is totally controlled in hardware there is a very [RANAYAC] I RUATATA W RURTANA
small re-arm time from end of one segment until the trigger de-
tgction is enobl.ed ogqip. You'll find that re-arm time in the tech- ~Segment -
nical data section of this manual.

The following table shows the register for defining the structure of the segments to be recorded with each trigger event.

Register Value Direction Description

SPC_POSTRIGGER 10100 read/write Acquistion only: defines the number of samples to be recorded after the trigger event.

SPC_SEGMENTSIZE 10010 read/write Size of one Multiple Recording/Replay segment: the total number of samples to be recorded/
replayed after detection of one trigger event.

Each segment in acquisition mode can consist of pretrigger and/or postirigger samples. The user always has to set the total segment size
and the postirigger, while the pretrigger is calculated within the driver with the formula: [pretrigger] = [segment size] - [posttrigger].

nels. When the calculated value exceeds that limit, the driver will return the error ERR_PRETRIGGERLEN.

j When using Multiple Recording the maximum pretrigger is limited depending on the number of active chan-
Please have a look at the table further below to see the maximum pretrigger length that is possible.

Recording modes

Standard Mode

With every detected trigger event one data block is filled with data. The length of one multiple recording segment is set by the value of the
segment size register SPC_SEGMENTSIZE. The total amount of samples to be recorded is defined by the memsize register.

Memsize must be set to a a multiple of the segment size. The table below shows the register for enabling Multiple Recording. For detailed
information on how to setup and start the standard acquisition mode please refer to the according chapter earlier in this manual.

Register Value Direction Description
SPC_CARDMODE 9500 read/write Defines the used operating mode
I SPC_REC_STD_MULTI 2 Enables Multiple Recording for standard acquisition.

The total number of samples to be recorded to the on-board memory in Standard Mode is defined by the SPC_MEMSIZE register.

Register Value Direction Description
SPC_MEMSIZE 10000 read/write Defines the total number of samples to be recorded.
FIFO Mode

The Multiple Recording in FIFO Mode is similar to the Multiple Recording in Standard Mode. In contrast to the standard mode it is not nec-
essary to program the number of samples to be recorded. The acquisition is running until the user stops it. The data is read block by block
by the driver as described under FIFO single mode example earlier in this manual. These blocks are online available for further data process-
ing by the user program. This mode significantly reduces the amount of data to be transfered on the PCl bus as gaps of no inferest did not
have to be transferred. This enables you to use faster sample rates than you would be able to in FIFO mode without Multiple Recording.
The advantage of Multiple Recording in FIFO mode is that you can stream data online to the host system. You can make realtime data pro-
cessing or store a huge amount of data to the hard disk. The table below shows the dedicated register for enabling Multiple Recording. For
detailed information how to setup and start the board in FIFO mode please refer to the according chapter earlier in this manual.

Register Value Direction Description
SPC_CARDMODE 9500 read/write Defines the used operating mode
I SPC_REC_FIFO_MULTI 32 Enables Multiple Recording for FIFO acquisition.

The number of segments to be recorded must be set separately with the register shown in the following table:

Register Value Direction Description

SPC_LOOPS 10020 read/write Defines the number of segments to be recorded
0 Recording will be infinite until the user stops it.
1...[4G-1] Defines the total segments to be recorded.

94 M2i.20xx / M2i.20xx-exp Manual

Option Multiple Recording/Replay

Limits of pre trigger, post trigger, memory size

Limits of pre trigger, post trigger, memory size

The maximum memory size parameter is only limited by the number of activated channels and by the amount of installed memory. Please
keep in mind that each samples needs 1 byte of memory to be stored. Minimum memory size as well as minimum and maximum post trigger

limits are independent of the activated channels or the installed memory.

Due to the internal organization of the card memory there is a certain stepsize when setting these values that has to be taken into account.
The following table gives you an overview of all limits concerning pre trigger, post trigger, memory size, segment size and loops. The table
shows all values in relation to the installed memory size in samples. If more memory is installed the maximum memory size figures will increase

according to the complete installed memory

Running the card with a sampling rate that is above 100 MS/s switches the cards internally to an interlace mode. In this mode two ADCs
are running in parallel using a 180° shifted signal. Due to the fact that two ADCs are running this mode has a little different limitations and

is listed separately in the following table.

Activated Used Memory size Pre trigger Post trigger Segment size Loops
Channels Mode SPC_MEMSIZE SPC_PRETRIGGER SPC_POSTTRIGGER SPC_SEGMENTSIZE SPC_LOOPS
Min ng Step Min | ng | Step Min ng Step Min | ng | Step Min | Max SteE
1 channel Standard Single 8 Mem 4 defined by post trigger | 4 8G-4 4 not used not used
Standard Multi/ABA | 8 Mem 4 4 16k-32 |4 4 Mem/2-4 | 4 8 |Mem/2 |4 not used
Standard Gate 8 Mem 4 4 16k-32 |4 4 Mem-4 4 not used not used
FIFO Single not used 4 16k-32 |4 not used 8 | 8G-4 | 4 0@ [4G-1 |1
FIFO Multi/ABA not used 4 16k-32 | 4 4 8G-4 4 8 8G-4 4 0(x) |4G-1 1
FIFO Ga_te not used 4 16k-32 |4 4 8G -4 4 not used 0 (x) |4G-1 1
1 channel Standard Single 16 Mem 8 defined by post trigger | 8 8G-8 8 not used not used
inferlace | Standard Multi/ABA | 16 | Mem 8 8 16k-32 |8 8 Mem/2-4 | 8 16 |Mem/2 |8 not used
Standard Gate 16 Mem 8 8 16k-32 |8 8 Mem-8 8 not used not used
FIFO Single not used 8 16k-32 |8 not used 16 | 8G-8 | 8 0@ [4G-1 |1
FIFO Multi/ABA not used 8 16k-32 |8 8 8G-8 8 16 8G-8 8 0 (x) |4G-1 1
FIFO Ga_te not used 8 16k-32 |8 8 8G -8 8 not used 0 (x) |4G-1 1
2 channels | Standard Single 8 Mem/2 |4 defined by post trigger | 4 8G-4 4 not used not used
Standard Multi/ABA | 8 Mem/2 | 4 4 8k-16 |4 4 Mem/4-4 | 4 8 |Mem/4a |4 not used
Standard Gate 8 Mem/2 4 4 8k-16 4 4 Mem/2-4 | 4 not used not used
FIFO Single not used 4 8k-16 |4 not used 8 | 8G-4 | 4 0@ [4G-1 |1
FIFO Multi/ABA not used 4 8k-16 4 4 8G-4 4 8 8G-4 4 O (o) [4G-1 1
FIFO Gcite not used 4 8k-16 4 4 8G-4 4 not used 0 (o) |4G-1 1
2 channels | Standard Single 16 Mem/2 |8 defined by post trigger | 8 8G-8 8 not used not used
inferlace | Standard Multi/ABA | 16 | Mem/2 |8 8 8k-16 |8 8 Mem/4-8 | 8 16 |Mem/4 |8 not used
Standard Gate 16 Mem/2 8 8 8k-16 8 8 Mem/2-8 | 8 not used not used
FIFO Single not used 8 8k-16 8 not used 16 | 8G-8 | 8 0(x) |4G-1 1
FIFO Multi/ABA not used 8 8k-16 8 8 8G-8 8 16 8G-8 8 0(x) |4G-1 1
FIFO Gate not used 8 8k-16 8 8 8G - 8 8 not used 0 (o) |4G-1 1
4 channels | Standard Single 8 Mem/4 |4 defined by post trigger | 4 8G-4 4 not used not used
Standard Multi/ABA | 8 Mem/4 | 4 4 4-8 |4 4 Mem/8-4 | 4 8 | Memsg |4 not used
Standard Gate 8 Mem/4 | 4 4 4k - 8 4 4 Mem/4-4 | 4 not used not used
FIFO Single not used 4 4k - 8 4 not used 8 | 8G-4 | 4 0(x) |4G-1 1
FIFO Multi/ABA not used 4 4k - 8 4 4 8G-4 4 8 8G-4 4 0 (o) [4G-1 1
FIFO Gate not used 4 4k - 8 4 4 8G-4 4 not used 0(x) |4G-1 1

All figures listed here are given in samples. An entry of [8k - 16] means [8 kSamples - 16] = [8192 - 16] = 8176 samples.

The given memory and memory / divider figures depend on the installed on-board memory as listed below:

Installed Memory
64 MSample 128 MSample | 256 MSample 512 MSample 1 GSample 2 GSample 4 GSample
Mem 64 MSample 128 MSample 256 MSample 512 MSample 1 GSample 2 GSample 4 GSample
Mem / 2 32 MSample 64 MSample 128 MSample 256 MSample 512 MSample 1 GSample 2 GSample
Mem / 4 16 MSample 32 MSample 64 MSample 128 MSample 256 MSample 512 MSample 1 GSample
Mem / 8 8 MSample 16 MSample 32 MSample 64 MSample 128 MSample 256 MSample 512 MSample

Please keep in mind that this table shows all values at once. Only the absolute maximum and minimum values are shown. There might be
additional limitations. Which of these values is programmed depends on the used mode. Please read the detailed documentation of the mode.

Multiple Recording and Timestamps

Multiple Recording is well matching with the timestamp option. If timestamp
recording is activated each trigger event and therefore each Multiple Re-
cording segment will get timestamped as shown in the drawing on the right.

Please keep in mind that the trigger events are timestamped, not the begin-
ning of the acquisition. The first sample that is available is at the time position
of [Timestamp - Pretfrigger].

The programming details of the timestamp option is explained in an extra
chapter.

Start iTriggerl Trigger2 Trigger3
Trigger ! I :
Input Jr‘lunur:\WnLr I\Un"f:\uhunu o Jr\Unur?\U.\;'1U
Stamp1 i
: Stamp2
g Stamp3

(c) Spectrum GmbH

95

Trigger Modes Option Multiple Recording/Replay

Trigger Modes

When using Multiple Recording all of the card’s trigger modes can be used except the software trigger. For defailed information on the avail-
able trigger modes, please take a look at the relating chapter earlier in this manual.

Trigger Output

When using infernal trigger recognition and enabling the trigger output there is a trigger pulse generated for each acquired segment. The
trigger output goes to high level after recoginition of the internal trigger event and goes back again to low level if the acquisition of this
segment has been finished. To give compatibility to older hardware and to give maxmimum flexibility there is a special register to change
that behaviour.

Register Value Direction Description
SPC_LONGTRIG_OUTPUT 200830 read/write Defines the trigger pulse output as explained below
0 (default) The trigger pulse is generated ;1 every trigger event and stays high until acquisition of segment has finished
1 The frigger pulse is generated on the first Irigger event and stays high until the end of the complete acquisition

Programming examples

The following example shows how to set up the card for Multiple Recording in standard mode.

spcm_dwSetParam i32 (hDrv, SPC_CARDMODE, SPC_REC_STD_MULTI) ; // Enables Standard Multiple Recording
spcm_dwSetParam i32 (hDrv, SPC_ SEGMENTSIZE, 1024) ; // Set the segment size to 1024 samples
spcm_dwSetParam i32 (hDrv, SPC_POSTTRIGGER, 768) ; // Set the posttrigger to 768 samples and therefore
// the pretrigger will be 256 samples
spcm_dwSetParam i32 (hDrv, SPC MEMSIZE, 4096) ; // Set the total memsize for recording to 4096 samples

// so that actually four segments will be recorded

spcm dwSetParam i32 (hDrv, SPC TRIG EXTO MODE, SPC TM POS); // Set triggermode to ext. TTL mode (rising edge)
spcm_dwSetParam_i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK EXT0); // and enable it within the trigger OR-mask

The following example shows how to set up the card for Multiple Recording in FIFO mode.

spcm_dwSetParam_i32 (hDrv, SPC_CARDMODE, SPC_REC_FIFO_MULTI); // Enables FIFO Multiple Recording

spcm_dwSetParam i32 (hDrv, SPC_ SEGMENTSIZE, 2048) ; // Set the segment size to 2048 samples

spcm_dwSetParam_i32 (hDrv, SPC_POSTTRIGGER, 1920) ; // Set the posttrigger to 1920 samples and therefore
// the pretrigger will be 128 samples

spcm dwSetParam i32 (hDrv, SPC_LOOPS 256) ; // 256 segments will be recorded

spcm_dwSetParam_i32 (hDrv, SPC_TRIG_EXTO_ MODE, SPC_TM NEG); // Set triggermode to ext. TTL mode (falling edge)
spcm dwSetParam i32 (hDrv, SPC TRIG ORMASK, SPC TMASK EXTO); // and enable it within the trigger OR-mask

96 M2i.20xx / M2i.20xx-exp Manual

Option Gated Sampling/Replay Acquisition modes

Option Gated Sampling/Replay

The option Gated Sampling/Replay allows the data acquisition/data gen-

eration controlled by an external or an internal gate signal. Data will only Pre: :Post .,
be recorded if the programmed gate condition is true. When using the e P 4T
Gated Sampling acquisition mode it is in addition also possible to pro- Gate ——— .| L

gram a pre- and/or posttrigger for recording samples prior to and/or af- o ﬂkm n N o AR
ter the valid gate. Input VAT R VA =i

This chapter will explqin all the necessary software register to set up the Memory Ununu 'luﬁuﬂunu LN
card for Gated Sampling/Replay properly. \,'

The section on the allowed trigger modes deals with detailed description
on the different trigger events and the resulting gates.

When using Gated Sampling/Replay the maximum pretrigger is limited as shown in the technical data section. When the pro-
grammed value exceeds that limit, the driver will return the error ERR_PRETRIGGERLEN. A

Register Value Direction Description
SPC_PRETRIGGER 10030 read/write Defines the number of samples to be record prior to the gate start.
SPC_POSTTRIGGER 10100 read/write Defines the number of samples to be record after the gate end.

Acquisition modes

Standard Mode

Data will be recorded as long as the gate signal fulfils the programmed gate condition. At the end of the gate interval the recording will be
stopped and the card will pause until another gates signal appears. If the total amount of data to acquire has been reached, the card stops
immediately. For that reason the last gate segment is ended by the expiring memory size counter and not by the gate end signal. The total

amount of samples to be recorded can be defined by the memsize register. The table below shows the register for enabling Gated Sampling.
For detailed information on how to setup and start the standard acquisition mode please refer to the according chapter earlier in this manual.

Register Value Direction Description
SPC_CARDMODE 9500 read/write Defines the used operating mode
I SPC_REC_STD_GATE 4 Enables Gated Sampling for standard acquisition.

The total number of samples to be recorded to the on-board memory in Standard Mode is defined by the SPC_MEMSIZE register.

Register Value Direction Description
SPC_MEMSIZE 10000 read/write Defines the total number of samples to be recorded.
FIFO Mode

The Gated Sampling in FIFO Mode is similar to the Gated Sampling in Standard Mode. In contrast to the Standard Mode you cannot program
a certfain fotal amount of samples to be recorded, but two other end conditions can be set instead. The acquisition can either run until the
user stops it by software (infinite recording), or until a programmed number of gates has been recorded. The data is read continuously by
the driver. These data is online available for further data processing by the user program. The advantage of Gated Sampling in FIFO mode
is that you can stream data online to the host system with a lower average data rate than in conventional FIFO mode without Gated Sampling.
You can make realtime data processing or store a huge amount of data to the hard disk. The table below shows the dedicated register for
enabling Gated Sampling in FIFO mode. For detailed information how to setup and start the card in FIFO mode please refer to the according
chapter earlier in this manual.

Register Value Direction Description
SPC_CARDMODE 9500 read/write Defines the used operating mode
I SPC_REC_FIFO_GATE 64 Enables Gated Sampling for FIFO acquisition.

The number of gates to be recorded must be set separately with the register shown in the following table:

Register Value Direction Description

SPC_LOOPS 10020 read/write Defines the number of gates to be recorded
0 Recording will be infinite until the user stops it.
1...[4G-1] Defines the total gates to be recorded.

(c) Spectrum GmbH 97

Gated Sampling and Timestamps

Option Gated Sampling/Replay

Limits of pre trigger, post trigger, memory size

The maximum memory size parameter is only limited by the number of activated channels and by the amount of installed memory. Please
keep in mind that each samples needs 1 byte of memory to be stored. Minimum memory size as well as minimum and maximum post trigger

limits are independent of the activated channels or the installed memory.

Due to the infernal organization of the card memory there is a certain stepsize when setting these values that has to be taken info account.
The following table gives you an overview of all limits concerning pre trigger, post trigger, memory size, segment size and loops. The table
shows all values in relation to the installed memory size in samples. If more memory is installed the maximum memory size figures will increase
according to the complete installed memory

Running the card with a sampling rate that is above 100 MS/s switches the cards internally to an interlace mode. In this mode two ADCs
are running in parallel using a 180° shifted signal. Due fo the fact that two ADCs are running this mode has a little different limitations and
is listed separately in the following table.

Activated Used Memory size Pre trigger Post trigger Segment size Loops
Channels Mode SPC_MEMSIZE SPC_PRETRIGGER SPC_POSTTRIGGER SPC_SEGMENTSIZE SPC_LOOPS
Min Max Step Min | Max | Step Min Max Step Min | Max | Step Min | Max | Step
1 channel Standard Single 8 Mem 4 defined by post trigger | 4 8G-4 4 not used not used
Standard Multi/ABA | 8 Mem 4 4 16k-32 |4 4 Mem/2-4 | 4 8 |Mem/2 |4 not used
Standard Gate 8 Mem 4 4 16k-32 |4 4 Mem-4 4 not used not used
FIFO Single not used 4 16k-32 |4 not used 8 | 8G-4 | 4 O[) [4G-1 |1
FIFO Multi/ABA not used 4 16k-32 | 4 4 8G-4 4 8 8G-4 4 0(x) |4G-1 1
FIFO Gate not used 4 16k-32 |4 4 8G -4 4 not used 0 (o) |4G-1 1
1 channel Standard Single 16 Mem 8 defined by post trigger | 8 8G-8 8 not used not used
interlace Standard Multi/ABA | 16 Mem 8 8 16k-32 | 8 8 Mem/2-4 | 8 16 | Mem/2 | 8 not used
Standard Gate 16 Mem 8 8 16k-32 |8 8 Mem-8 8 not used not used
FIFO Single not used 8 16k-32 |8 not used 16 | 8G-8 | [} O[) [4G-1 |1
FIFO Multi/ABA not used 8 16k-32 |8 8 8G-8 8 16 8G-8 8 0(x) |4G-1 1
FIFO Gate not used 8 16k-32 |8 8 8G -8 8 not used 0 (o) |4G-1 1
2 channels | Standard Single 8 Mem/2 |4 defined by post trigger | 4 8G-4 4 not used not used
Standard Multi/ABA | 8 Mem/2 | 4 4 8k-16 |4 4 Mem/4-4 | 4 8 |Mem/4a |4 not used
Standard Gate 8 Mem/2 |4 4 8k-16 4 4 Mem/2-4 | 4 not used not used
FIFO Single not used 4 8k-16 |4 not used 8 | 8G-4 | 4 O[) [4G-1 |1
FIFO Multi/ABA not used 4 8k-16 4 4 8G-4 4 8 8G-4 4 0 (o) [4G-1 1
FIFO Gate not used 4 8k-16 4 4 8G -4 4 not used 0 (o) |4G-1 1
2 channels | Standard Single 16 Mem/2 |8 defined by post trigger | 8 8G-8 8 not used not used
interlace Standard Multi/ABA | 16 Mem/2 8 8 8k-16 8 8 Mem/4-8 | 8 16 | Mem/4 | 8 not used
Standard Gate 16 Mem/2 |8 8 8k-16 8 8 Mem/2-8 | 8 not used not used
FIFO Single not used 8 8k-16 |8 not used 16 | 8G-8 | 8 O[) [4G-1 |1
FIFO Multi/ABA not used 8 8k-16 8 8 8G-8 8 16 8G-8 8 0(x) |4G-1 1
FIFO the not used 8 8k-16 8 8 8G - 8 8 not used 0 (o) |4G-1 1
4 channels | Standard Single 8 Mem/4 |4 defined by post trigger | 4 8G-4 4 not used not used
Standard Multi/ABA | 8 Mem/4 | 4 4 4k-8 |4 4 Mem/8-4 | 4 8 |Mem/g |4 not used
Standard Gate 8 Mem/4 | 4 4 4k -8 4 4 Mem/4-4 | 4 not used not used
FIFO Single not used 4 4k -8 4 not used 8 | 8G-4 | 4 0(x) |4G-1 1
FIFO Multi/ABA not used 4 4k - 8 4 4 8G-4 4 8 8G-4 4 0 (o) [4G-1 1
FIFO Gate not used 4 4k -8 4 4 8G -4 4 not used 0(x) |4G-1 1
All figures listed here are given in samples. An entry of [8k - 16] means [8 kSamples - 16] = [8192 - 16] = 8176 samples.
The given memory and memory / divider figures depend on the installed on-board memory as listed below:
Installed Memory
64 Msample 128 MSample | 256 MSample 512 MSample 1 GSample 2 GSample 4 GSample
Mem 64 MSample 128 MSample 256 MSample 512 MSample 1 GSample 2 GSample 4 GSample
Mem / 2 32 MSample 64 MSample 128 MSample 256 MSample 512 MSample 1 GSample 2 GSample
Mem / 4 16 MSample 32 MSample 64 MSample 128 MSample 256 MSample 512 MSample 1 GSample
Mem / 8 8 MSample 16 MSample 32 MSample 64 MSample 128 MSample 256 MSample 512 MSample

Please keep in mind that this table shows all values at once. Only the absolute maximum and minimum values are shown. There might be
additional limitations. Which of these values is programmed depends on the used mode. Please read the detailed documentation of the mode.

Gated Sampling and Timestamps

Gated Sampling and the timestamp option fit very good together. If timestamp
recording is activated each gate will get timestamped as shown in the draw-
ing on the right. As you can see both, beginning and end of the gate interval
are timestamped. Each gate segment will therefore produce two timestamps
showing start of the gate interval and end of the gate interval. By taking both
timestamps into account one can read out the time position of each gate as

well as the length in samples. There is no other way to examine the length of

each gate segment than reading out the timestamps.

Please keep in mind that the gate signals are timestamped, not the beginning

Pre:

‘Post

oo §

and end of the acquisition. The first sample that is available is at the time po-

Input :
(< SiampT ™ 1
mp :
e Samp3 >
Sfampd .
Sfamps
Siampo

98

M2i.20xx / M2i.20xx-exp Manual

Option Gated Sampling/Replay Trigger

sition of [Timestamp1 - Pretrigger]. The last sample of the gate segment is at the position [Timestamp2 + Postirigger]. The length of the gate
segment is [Timestamp?2 - Timestamp1 + Prefrigger + Posttrigger]. When using the standard gate mode the end of recording is defined by
the expiring memsize counter. Therefore there is no end of gate timestamp for the last gate segment!

The programming details of the timestamp option is explained in an extra chapter.

Trigger

Trigger Output

When using infernal trigger recognition and enabling the trigger output there is a trigger pulse generated for each acquired segment. The
trigger output goes to high level after recoginition of the internal trigger event and goes back again to low level if the acquisition of this
segment has been finished. To give compatibility to older hardware and to give maxmimum flexibility there is a special register to change
that behaviour.

Register Value Direction Description
SPC_LONGTRIG_OUTPUT 200830 read/write Defines the trigger pulse output as explained below
0 (default) The trigger pulse is generated :1 every trigger event and stays high until acquisition of segment has finished
1 The trigger pulse is generated on the first trigger event and stays high until the end of the complete acquisition

Edge and level triggers

For all external edge and level trigger modes, the OR mask must contain the corresponding input, as the following table shows:

Register Value Direction Description
SPC_TRIG_ORMASK 40410 read/write Defines the OR mask for the different trigger sources.
I SPC_TMASK_EXTO 2h Enable external trigger input for the OR mask

Positive TTL single edge trigger

This mode is for detecting the rising edges of an external TTL sig-
nal. The gate will start on rising edges that are detected after start- Start
ing the board.

As this mode is purely edge-triggered, the high level at the cards
start time, does not trigger the board. TTL Input

With the next falling edge the gate will be stopped.

Gate
Register Value Direction Description
SPC_TRIG_EXTO_MODE 40510 read/write Sets the external trigger mode for the board
I SPC_TM_POS 1h Sets the trigger mode for external TTL trigger to detect positive edges

HIGH TTL level trigger

This mode is for detecting the high levels of an external TTL signal.
The gate will start on high levels that are detected after starting Start
the board acquisition/generation.

As this mode is purely leveltriggered, the high level at the cards
start time, does trigger the board. TTL Input

With the next low level the gate will be stopped.

Gate
Register Value Direction Description
SPC_TRIG_EXTO_MODE 40510 read/write Sets the external trigger mode for the board
I SPC_TM_HIGH 8h Sets the trigger mode for external TTL trigger to detect high levels.
— —

(c) Spectrum GmbH 99

Trigger Option Gated Sampling/Replay

Positive TTL double edge trigger

This mode is for detecting the rising edges of an external TTL sig-
nal. The gate will start on the first rising edge that is detected after Start
starting the board.]
S
) | /
As this mode is purely edge-triggered, the high level at the cards !
start time, does not trigger the board. TTL Input |
|
! 1 1
The gate will stop on the second rising edge that is detected. i | |
| i i
|
|
Gate !
I
Register Value Direction Description
SPC_TRIG_EXTO_MODE 40510 read/write Sets the external trigger mode for the board
SPC_TM_POS | 08000001h | Sets the gate mode for external TTL trigger to start and stop on positive edges.
SPC_TM_DOUBLEEDGE

Negative TTL single edge trigger

This mode is for detecting the falling edges of an external TTL sig-
nal. The gate will start on falling edges that are detected after Start
starting the board.

As this mode is purely edge-triggered, the low level at the cards
start time, does not trigger the board. TTL Input

With the next rising edge the gate will be stopped.

Gate
Register Value Direction Description
SPC_TRIG_EXTO_MODE 40510 read/write Sets the external trigger mode for the board
I SPC_TM_NEG 2h Sets the trigger mode for external TTL trigger to detect negative edges.
LOW TTL level trigger
This mode is for detecting the low levels of an external TTL signal.
The gate will start on low levels that are detected after starting the Start
board.]
I
. . . |
As this mode is purely leveltriggered, the low level at the cards !
start time, does trigger the board. TTL Input i
Y |
With the next high level the gate will be stopped. i | |
| i i i
Gate
Register Value Direction Description
SPC_TRIG_EXTO_MODE 40510 read/write Sets the external trigger mode for the board
I SPC_TM_LOW 10h Sets the trigger mode for external TTL trigger to detect low levels.

100 M2i.20xx / M2i.20xx-exp Manual

Option Gated Sampling/Replay Trigger

Negative TTL double edge trigger

This mode is for detecting the falling edges of an external TTL sig-

nal. The gate will start on the first falling edge that is detected af- Start

ter starting the board.]
|
|

As this mode is purely edge-riggered, the low level at the cards !

start time, does not trigger the board. TTL Input |
| \

The gate will stop on the second falling edge that is detected. i E E
| i i
|
|

Gate !
1
Register Value Direction Description
SPC_TRIG_EXTO_MODE 40510 read/write Sets the external trigger mode for the board
SPC_TM_NEG | 08000002h | Sets the gate mode for external TTL trigger to start and stop on negative edges
SPC_TM_DOUBLEEDGE
(c) Spectrum GmbH 101

Trigger Option Gated Sampling/Replay

Pulsewidth triggers

For all external edge and level trigger modes, the OR mask must contain the corresponding input, as the following table shows:

Register Value Direction Description
SPC_TRIG_ORMASK 40410 read/write Defines the OR mask for the different trigger sources.
I SPC_TMASK_EXTO 2h Enable external trigger input for the OR mask
—

TTL pulsewidth trigger for long HIGH pulses

This mode is for detecting a rising edge of an external TTL signal
followed by a HIGH pulse that are longer than a programmed
pulsewidth. If the pulse is shorter than the programmed pulse-
width, no trigger will be detected. TTL Input
The gate will start on the first pulse matching the trigger condition s |
N Pulsewidth Pulsewidth
after starting the board.
The gate will stop with the next falling edge. Gate
Register Value Direction Description
SPC_TRIG_EXTO_PULSEWIDTH 44210 read/write Sets the pulsewidth in samples. Values from 2 to 65535 are allowed.
SPC_TRIG_EXTO_MODE 40510 read/write Sets the trigger mode for the board.
(SPC_TM_POS | 4000001h Sets the trigger mode for external TTL trigger to detect HIGH pulses that are longer than a programmed pulsewidth.
SPC_TM_PW_GREATER)
TTL pulsewidth trigger for long LOW pulses
This mode is for detecting a falling edge of an external TTL signal
followed by a LOW pulse that are longer than a programmed
pulsewidth. If the pulse is shorter than the programmed pulse-
width, no trigger will be detected. TTL Input
The gate will start on the first pulse matching the trigger condition s |
N Pulsewidth Pulsewidth
after starting the board.
The gate will stop with the next rising edge. Gate
Register Value Direction Description
SPC_TRIG_EXTO_PULSEWIDTH 44210 read/write Sets the pulsewidth in samples. Values from 2 to 65535 are allowed.
SPC_TRIG_EXTO_MODE 40510 read/write Sets the trigger mode for the board.
(SPC_TM_NEG | 4000002h Sets the trigger mode for external TTL trigger to detect LOW pulses that are longer than a programmed pulsewidth.
SPC_TM_PW_GREATER)

spcm_dwSetParam i32 (hDrv,SPC_TRIG_EXTO_ MODE, SPC_TM NEG | SPC_TM_PW_GREATER) ; // Setting up external TTL

// trigger to detect low pulses
spcm_dwSetParam 132 (hDrv, SPC TRIG EXTO PULSEWIDTH , 50); // that are longer than 50 samples.

spcm_dwSetParam i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_EXTO) ; // and enable it within the OR mask

102 M2i.20xx / M2i.20xx-exp Manual

Option Gated Sampling/Replay Trigger

Channel triggers modes

For all channel trigger modes, the OR mask must contain the corresponding input channels (channel O taken as example here):.

Register Value Direction Description
SPC_TRIG_CH_ORMASKO 40460 read/write Defines the OR mask for the channel trigger sources.
I SPC_TMASKO_CHO 1h Enables channelO input for the channel OR mask

Channel trigger on positive edge

The analog input is continuously sampled with the selected
sample rate. If the programmed trigger level is crossed by Start
the channel’s signal from lower values to higher values (ris- |

ing edge) the gate starts. T S Triggerlevel

When the signal crosses the programmed trigger level from

higher values to lower values (falling edge) then the gate
will stop. \ /

As this mode is purely edge-riggered, the high level at the
cards start time, does not trigger the board.

mmmaddreo

Gate

Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_POS Th
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant

Channel trigger HIGH level

The analog input is continuously sampled with the selected
sample rate. If the signal is equal or higher than the pro- Start
grammed trigger level the gate starts. |

T A Triggerlevel O\
When the signal is lower than the programmed trigger level T T T T T Ty T —=oeilh o iy
the gate will stop. 1 n

As this mode is leveltriggered, the high level at the cards
start time, does trigger the board.

/
.

Gate
i
Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_HIGH 8h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant
Channel trigger on negative edge
The analog input is continuously sampled with the selected
sample rate. If the programmed trigger level is crossed by Start
. . . |
the channel’s signal higher values to lower values (falling |
|
edge] the gate starts. S NE— Lo T N Tiggerlevel /7 N\
| v

When the signal crosses the programmed trigger from low-

er values to higher values (rising edge) then the gate will \
stop. /

As this mode is purely edge-riggered, the low level at the

=

cards start time, does not trigger the board. Gate 5
L
Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_NEG 2h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant

(c) Spectrum GmbH 103

Trigger

Option Gated Sampling/Replay

Channel trigger LOW level

The analog input is continuously sampled with the selected
sample rate. If the signal is equal or lower than the pro- Start
. |
grammed trigger level the gate starts. |
|
- ! = Triggerlevel _\
When the signal is higher than the programmed trigger lev- ‘7[“ —————— > T e oY
el the gate will stop. : : : : _
I I I I 1
| | | | t
As this mode is leveltriggered, the high level at the cards [! ! !
start time, does trigger the board. | | | — |
Gate |
+
Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_LOW 10h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant

Channel re-arm trigger on positive edge

The analog input is continuously sampled with the selected
sample rate. If the programmed re-arm level is crossed from
lower to higher values, the trigger engine is armed and
waiting for trigger.

If the programmed trigger level is crossed by the channel’s

armed
1
|

signal from lower values to higher values (rising edge) then
the gate starts and the trigger engine will be disarmed.

If the programmed trigger level is crossed by the channel’s

signal from higher values to lower values (falling edge) the Gate

gate stops.

A new trigger event is only detected, if the trigger engine is armed again. The re-arm trigger modes can be used to prevent the board from

triggering on wrong edges in noisy signals.

Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_POS | SPC_TM_REARM 0100000T1h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant
SPC_TRIG_CHO_LEVEL1 42300 read/write Defines the re-arm level relatively to the channels’s input range board dependant

Channel re-arm trigger on negative edge

The analog input is continuously sampled with the selected
sample rate. If the programmed re-arm level is crossed from
higher to lower values, the trigger engine is armed and
waiting for trigger.

If the programmed trigger level is crossed by the channel’s

signal from higher values to lower values (falling edge) then
the gate starts and the trigger engine will be disarmed.

If the programmed trigger level is crossed by the channel’s

signal from lower values to higher values [rising edge) the Gate

/trigger level

[]

gate stops.

A new trigger event is only detected, if the trigger engine is armed again. The re-arm trigger modes can be used to prevent the board from

triggering on wrong edges in noisy signals.

Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_NEG | SPC_TM_REARM 01000002h
SPC_TRIG_CHO_LEVELO 42200 read/write Defines the re-arm level relatively to the channels’s input range board dependant
SPC_TRIG_CHO_LEVEL1 42300 read/write Defines the re-arm level relatively to the channels’s input range board dependant

104

M2i.20xx / M2i.20xx-exp Manual

Option Gated Sampling/Replay Trigger

Channel pulsewidth trigger for long positive pulses

The analog input is continuously sampled with the selected
sample rate. If the programmed trigger level is crossed by
the channel’s signal from lower to higher values (rising
edge) the pulsewidth counter is started. If the signal crosses
the trigger level again in the opposite direction within the
the programmed pulsewidth time, no trigger will be defect
ed. If the pulsewidth counter reaches the programmed
amount of samples, without the signal crossing the trigger
level in the opposite direction, the gate will start.

If the programmed trigger level is crossed by the channel’s
signal from higher to lower values (falling edge) the gate
will stop.

The pulsewidth trigger modes for long pulses can be used to prevent the board from triggering on wrong (short) edges in noisy signals.

Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_POS | SPC_TM_PW_GREATER 04000001h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant
SPC_TRIG_CHO_PULSEWIDTH 44101 read/write Sets the pulsewidth in samples. Values from 2 to 65535 are allowed. 2 to 65535

Channel pulsewidth trigger for long negative pulses

The analog input is continuously sampled with the selected
sample rate. If the programmed trigger level is crossed by N\
the channel’s signal from higher to lower values (falling
edge) the pulsewidth counter is started. If the signal crosses
the trigger level again in the opposite direction within the
the programmed pulsewidth time, no trigger will be detect-
ed. If the pulsewidth counter reaches the programmed
amount of samples, without the signal crossing the trigger
level in the opposite direction, the gate will start.

If the programmed trigger level is crossed by the channel’s
signal from lower to higher values (rising edge) the gate will
stop.

The pulsewidth trigger modes for long pulses can be used to prevent the board from triggering on wrong (short) edges in noisy signals.

Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_NEG | SPC_TM_PW_GREATER 04000002h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the desired trigger level relatively to the channel’s input range. board dependant
SPC_TRIG_CHO_PULSEWIDTH 44101 read/write Sets the pulsewidth in samples. Values from 2 to 65535 are allowed. 2 to 65535

Channel window trigger for entering signals

The analog input is continuously sampled with the selected
sample rate. The upper and the lower level define a win-
dow. | —

When the signal enters the window from the outside to the
inside, the gate will start.

|ower |eve|

. . L. | | |

When the signal leaves the window from the inside to the - LN - !

outside, the gate will stop. Lo |

As this mode is purely edge-triggered, the signal outside the Cate -

window at the cards start time, does not trigger the board. i
Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_WINENTER 00000020h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependant
SPC_TRIG_CHO_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel’s input range. board dependant

(c) Spectrum GmbH 105

Trigger

Option Gated Sampling/Replay

Channel window trigger for leaving signals

The analog input is continuously sampled with the selected
sample rate. The upper and the lower level define a win-
dow.

When the signal leaves the window from the inside to the
outside, the gate will start.

When the signal enters the window from the outside to the
inside, the gate will stop.

Stgn

I

| —

! upper level T
N N o sl sl A _

I /l | /I \I\

I I I I I

I I I I -
----- e

- | | | = _//I reve | |

I I I I

As this mode is purely edge-triggered, the signal within the Gate | _‘ | -

window at the cards start time, does not trigger the board. t
Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_WINLEAVE 00000040h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependant
SPC_TRIG_CHO_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel’s input range. board dependant

Channel window trigger for inner signals

The analog input is continuously sampled with the selected
sample rate. The upper and the lower level define a win-
dow.

When the signal enters the window from the outside to the
inside, the gate will start.

|ower |eve|

\

| | |

When the signal leaves the window from the inside to the ! LN - !

outside, the gate will stop. | Lo |

As this mode is levelriggered, the signal inside the window Cate |—‘ -

at the cards start time, does trigger the board. t
Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_INWIN 00000080h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependant
SPC_TRIG_CHO_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel’s input range. board dependant

Channel window trigger for outer signals

The analog input is continuously sampled with the selected
sample rate. The upper and the lower level define a win-
dow.

When the signal leaves the window from the inside to the
outside, the gate will start.

When the signal enters the window from the outside to the
inside, the gate will stop.

As this mode is leveltriggered, the signal outside the win-
dow at the cards start time, does trigger the board.

upper level

Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_OUTSIDEWIN 00000100h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependant
SPC_TRIG_CHO_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel’s input range. board dependant

106

M2i.20xx / M2i.20xx-exp Manual

Option Gated Sampling/Replay Programming examples

Channel window trigger for long inner signals

The analog input is continuously sampled with the selected

sample rate. The upper and the lower levels define a win-

dow. Every time the signal enters the window from the out-
side, the pulsewidth counter is started. If the signal leaves

the window before the pulsewidth counter has stopped, no
trigger will be detected.

When the pulsewidth counter stops and the signal is still in-
side the window, the gate will start.

When the signal leaves the window from the inside to the Gate 5

outside, the gate will stop. t
Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_WINENTER | SPC_TM_PW_GREATER 04000020h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependant
SPC_TRIG_CHO_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel’s input range. board dependant
SPC_TRIG_CHO_PULSEWIDTH 44101 read/write Sets the pulsewidth in samples. Values from 2 to 65535 are allowed. 2 to 65535

Channel window trigger for long outer signals

The analog input is continuously sampled with the selected
sample rate. The upper and the lower levels define a win-
dow. Every time the signal leaves the window from the in-
side, the pulsewidth counter is started. If the signal enters
the window before the pulsewidth counter has stopped, no
trigger will be detected.

When the pulsewidth counter stops and the signal is still out-
side the window, the gate will start.

When the signal enters the window from the outside to the Cate 5

inside, the gate will stop. t
Register Value Direction set to Value
SPC_TRIG_CHO_MODE 40610 read/write SPC_TM_WINLEAVE | SPC_TM_PW_GREATER 04000040h
SPC_TRIG_CHO_LEVELO 42200 read/write Set it to the upper trigger level relatively to the channel’s input range. board dependant
SPC_TRIG_CHO_LEVEL1 42300 read/write Set it to the lower trigger level relatively to the channel’s input range. board dependant
SPC_TRIG_CHO_PULSEWIDTH 44101 read/write Sets the pulsewidth in samples. Values from 2 to 65535 are allowed. 2 to 65535

Programming examples

The following examples shows how to set up the card for Gated Sampling in standard mode for Gated Sampling in FIFO mode.

spcm_dwSetParam_i32 (hDrv, SPC_CARDMODE, SPC_REC_STD GATE); // Enables Standard Gated Sampling

spcm_dwSetParam i32 (hDrv, PRETRIGGER, 256) ; // Set the pretrigger to 256 samples
spcm_dwSetParam_i32 (hDrv, POSTTRIGGER, 2048); // Set the posttrigger to 2048 samples
spcm_dwSetParam i32 (hDrv, SPC_MEMSIZE, 8192); // Set the total memsize for recording to 8192 samples

spcm_dwSetParam 132 (hDrv, SPC_TRIG_EXTO0 MODE, SPC_TM POS); // Set triggermode to ext. TTL mode (rising edge)
spcm dwSetParam i32 (hDrv, SPC TRIG ORMASK, SPC TMASK EXTO); // and enable it within the trigger OR-mask

spcm_dwSetParam_i32 (hDrv, SPC_CARDMODE, SPC_REC_FIFO GATE) ; // Enables FIFO Gated Sampling

spcm_dwSetParam i32 (hDrv, PRETRIGGER, 128); // Set the pretrigger to 128 samples
spcm_dwSetParam_i32 (hDrv, POSTTRIGGER, 512); // Set the posttrigger to 512 samples
spcm dwSetParam i32 (hDrv, SPC_LOOP, 1024) ; // 1024 gates will be recorded

spcm_dwSetParam 132 (hDrv, SPC_TRIG EXT0 MODE, SPC_TM NEG); // Set triggermode to ext. TTL mode (falling edge)
spcm dwSetParam i32 (hDrv, SPC TRIG ORMASK, SPC TMASK EXTO); // and enable it within the trigger OR-mask

(c) Spectrum GmbH 107

General information Option Timestamps

Option Timestamps

General information

The timestamp function is used to record trigger events relative to the beginning of the measurement, relative to a fixed time-zero point or
synchronized to an external reset clock. The reset clock can come from a radio clock a GPS signal or from any other external machine.

The timestamp is internally realized as a very wide counter that is running with the currently used sampling rate. The counter is reset either
by explicit software command or depending on the mode by the start of the card. On receiving the trigger event (or at the start and at the
end of a gate interval when using Gated Sampling mode) the current counter value is stored in an extra FIFO memory.

This function is designed as an enhancement to the Multiple Recording and the Gated Sampling mode and is also used together with the ABA
mode option but can also be used without these options with plain single acquisitions. If Gated Sampling mode is used, then both the start
and end of a recorded segment are timestamped.

Each recorded timestamp consists of the number of samples that has been counted since the last
counter reset has been done. The actual time in relation to the reset command can be easily calcu-
lated by the formula on the right. Please note that the timestamp recalculation depends on the cur-
rently used sampling rate and the oversampling factor. Please have a look at the clock chapter to
see how to read out the sampling rate and the oversampling factor

_ Timestamp
Sampling rate * Oversampling

If you want to know the time between two timestamps, you can simply calculate this by the for-

Timestamp — Timestamp
mula on the right. A n+1 n

- Sampling rate * Oversampling

The following registers can be used for the timestamp option:

Register Value Direction Description
SPC_TIMESTAMP_STARTTIME 47030 read/write Return the reset time when using reference clock mode. Hours are placed in bit 16 to 23, minutes are
placed in bit 8 to 15, seconds are placed in bit 0 to 7
SPC_TIMESTAMP_STARTDATE 47031 read/write Return the reset date when using reference clock mode. The year is placed in bit 16 to 31, the month
is placed in bit 8 to 15 and the day of month is placed in bit 0 to 7
SPC_TIMESTAMP_TIMEOUT 47045 read/write Set's a timeout in milli seconds for waiting of an reference clock edge
SPC_TIMESTAMP_AVAILMODES 47001 read Returns all available modes as a bitmap. Modes are listed below
SPC_TIMESTAMP_CMD 47000 read/write Programs a timestamp mode and performs commands as listed below
SPC_TSMODE_DISABLE 0 Timestamp is disabled.
SPC_TS_RESET 1h The counters are reset. If reference clock mode is used this command waits for the edge the timeout time.
SPC_TSMODE_STANDARD 2h Standard mode, counter is reset by explicit reset command.
SPC_TSMODE_STARTRESET 4h Counter is reset on every card start, all timestamps are in relation to card start.
SPC_TSCNT_INTERNAL 100h Counter is running with complete width on sampling clock
SPC_TSCNT_REFCLOCKPOS 200h Clouliﬂer is split, upper part is running with external reference clock positive edge, lower part is running with sampling
cloc
SPC_TSCNT_REFCLOCKNEG 400h Counter is split, upper part is running with external reference clock negative edge, lower part is running with sam-
pling clock
SPC_TSXIOACQ_ENABLE 4096 Enables the trigger synchronous acquisition of the BaseXIO inputs with every stored timestamp in the upper byte.
SPC_TSXIOACQ_DISABLE 0 The timestamp is filled up with leading zeros as a sign extension for positive values.

Example for setting timestamp mode:

The timestamp mode consists of one of the mode constants and one of the counter constants:

// setting timestamp mode to standard using internal clocking
spcm_dwSetParam_ i32 (hDrv, SPC_TIMESTAMP_CMD, SPC_TSMODE_STANDARD | SPC_TSCNT_INTERNAL) ;

// setting timestamp mode to start reset mode using internal clocking
spcm_dwSetParam_ i32 (hDrv, SPC_TIMESTAMP_CMD, SPC_TSMODE_STARTRESET | SPC_TSCNT_INTERNAL) ;

// setting timestamp mode to standard using external reference clock with positive edge
spcm_dwSetParam_i32 (hDrv, SPC_TIMESTAMP_CMD, SPC_TSMODE_STANDARD | SPC_TSCNT_REFCLOCKPOS) ;

Limits
The timestamp counter is running with the sampling clock on the base card. Some card types (like 2030 and 3025) use an interlace mode

to double the sampling speed. In this case the timestamp counter is only running with the non-interlaced sampling rate. Therefore the maximum
counting frequency of the timestamp option is limited to 125 MS/s.

108 M2i.20xx / M2i.20xx-exp Manual

Option Timestamps Timestamp modes

Timestamp modes

The timestamp command register selects which of the following modes should be used for generating timestamps. Independent of the used

mode each timestamp is every time 64 bit wide and is generated with the currently used sampling rate. As some A/D acquisition cards need
to use an oversampling factor to go beneath the minimum ADC sampling clock there might be a difference between the programmed sampling
rate and the sampling rate that is used to count the timestamp counter. The currently used sampling rate and oversampling counter can be

read out with the following register:

Register Value Direction Description
SPC_SAMPLERATE 20000 read Read out the internal sample rate that is currently used.
SPC_OVERSAMPLINGFACTOR 200123 read only Returns the oversampling factor for further calculations. If oversampling isnt active a 1 is returned.

There is no oversampling factor if using full digital acquisition cards.

Standard mode

In standard mode the timestamp counter is set to zero once by writing the TS_RESET commando to the command register. After that command
the counter counts continuously independent of start and stop of acquisition. The timestamps of all recorded trigger events are referenced to
this common zero time. With this mode you can calculate the exact time difference between different recordings and also within one acqui-
sition (if using Multiple Recording or Gated Sampling).

Trigger i i [1 i

.
L) L)
L Trig? | Acquisition1 | ----{Trig? [Acquisition2 |- - [Trig ?[Acquisitiond |- --- - -
L ! L ' L !
. . .
Ti P [[f Toz[oa[oa[os[os]or osjos[1o 2[1a[a[1s[v6| 1 [ve 1 o[20] 2|22 23] 2a] 23] 28] 27 | ze[o 0] a3 | a[s e a7 ae[ao] a0 m [aa[aa[sa[as[e a7 s[5
Counter . . .
. . .
Timestamps
TS_RESET| ICARD_START CARD_START CARD_START

The following table shows the valid values that can be written to the timestamp command register for this mode:

Register Value Direction Description
SPC_TIMESTAMP_CMD 47000 read/write Programs a timestamp mode and performs commands as listed below
SPC_TSMODE_DISABLE 0 Timestamp is disabled.
SPC_TS_RESET Th The timestamp counter is set fo zero
SPC_TSMODE_STANDARD 2h Standard mode, counter is reset by explicit reset command.
SPC_TSCNT_INTERNAL 100h Counter is running with complete width on sampling clock

Please keep in mind that this mode only work sufficiently as long as you don’t change the sampling rate
between two acquisitions that you want to compare. A

StartReset mode

In StartReset mode the timestamp counter is set to zero on every start of the card. After starting the card the counter counts continuously. The
timestamps of one recording are referenced to the start of the recording. This mode is very useful for Multiple Recording and Gated Sampling
(see according chapters for detailed information on these two optional modes)

Trigger i i [1 i

Card ... Trig? | Acquisitionl [----{Trig? Acquisition 2 |- - {Trig ?| Acquisition3 |- -----
4 ' A / '

T
L}
L} L}
T P [77]78]79]=0]0a]or[oz[os]ea]os]os[o7os]os]10]11]12]13]1 a1 s]oc]or[o2]os]oa[os]oso7[os[oe]10f11]12]1 3]14]1 s]1 6|00 o1 [oz[oa]oa]os[os|or[oe]os 0] 11121314 1 5]
+ + +
L}
L}

Counter .

Timestamps
ICARD_START CARD_START CARD_START

(c) Spectrum GmbH 109

Timestamp modes Option Timestamps

The following table shows the valid values that can be written to the timestamp command register.

Register Value Direction Description

SPC_TIMESTAMP_CMD 47000 read/write Programs a timestamp mode and performs commands as listed below
SPC_TSMODE_DISABLE 0 Timestamp is disabled.
SPC_TSMODE_STARTRESET 4h Counter is reset on every card start, all imestamps are in relation to card start.
SPC_TSCNT_INTERNAL 100h Counter is running with complete width on sampling clock

Refclock mode (needs BaseXIO option)

The counter is split in a HIGH and a LOW part and an additional external signal, that affects both parts of the counter, need to be fed in
externally. The external reference clock signal will reset the LOW part of the counter and increase the HIGH part of the counter. The upper
32 bit of the timestamp value hold the number of the clock edges that have occurred on the external reference clock signal, the lower 32 bit
will hold the timestamp counter with the position within the current reference clock period with the resolution of the sampling rate.

This mode can be used to obtain an absolute time reference when using an external radio clock or a GPS receiver. In that case the higher
part is counting the seconds since the last reset and the lower part is counting the position inside the second using the currently sampling rate.

Please keep in mind that as this mode uses an additional external signal and can therefore only be used
when the option BaseXIO is installed on the card. Otherwise there is no additional reference clock input avail-
able and this mode has no functionality.

The counting is initialized with the timestamp reset command. Both counter parts will then be set to zero.

Reset Signal

Trigger

Card

Timestamp
Counter

v
Timestamps E
TS_RESET| ICARD_START CARD_START CARD_START

The following table shows the valid values that can be written to the timestamp command register for this mode:

Register Value Direction Description
SPC_TIMESTAMP_STARTTIME 47030 read/write Return the reset time when using reference clock mode. Hours are placed in bit 16 to 23, minutes are
placed in bit 8 to 15, seconds are placed in bit 0 to 7
SPC_TIMESTAMP_STARTDATE 47031 read/write Return the reset date when using reference clock mode. The year is placed in bit 16 to 31, the month
is placed in bit 8 to 15 and the day of month is placed in bit O to 7
SPC_TIMESTAMP_TIMEOUT 47045 read/write Set's a timeout in milli seconds for waiting of an reference clock edge
SPC_TIMESTAMP_CMD 47000 read/write Programs a timestamp mode and performs commands as listed below
SPC_TSMODE_DISABLE 0 Timestamp is disabled.
SPC_TS_RESET 1h The counters are reset. If reference clock mode is used this command waits for the edge the timeout time.
SPC_TSMODE_STANDARD 2h Standard mode, counter is reset by explicit reset command.
SPC_TSMODE_STARTRESET 4h Counter is reset on every card start, all timestamps are in relation to card start.
SPC_TSCNT_REFCLOCKPOS 200h Clouliﬂer is split, upper part is running with external reference clock positive edge, lower part is running with sampling
cloc
SPC_TSCNT_REFCLOCKNEG 400h Clguntelr isksplit, upper part is running with external reference clock negative edge, lower part is running with sam-
pling cloc

To synchronize the external reference clock signal with the PC clock it is possible to perform a timestamp reset command which waits a spec-
ified time for the occurrence of the external clock edge. As soon as the clock edge is found the function stores the current PC time and date
which can be used to get the absolute time. As the timestamp reference clock can also be used with other clocks that don't need to be syn-

chronized with the PC clock the waiting time can be programmed using the SPC_TIMESTAMP_TIMEOUT register.

110 M2i.20xx / M2i.20xx-exp Manual

Option Timestamps Reading out the timestamps

Example for initialization of timestamp reference clock and synchronization of a seconds signal with the PC clock:

spcm_dwSetParam i32 (hDrv, SPC_TIMESTAMP_ CMD, SPC_TSMODE_STANDARD | SPC_TSCNT_ REFCLOCKPOS) ;
spcm_dwSetParam i32 (hDrv, SPC TIMESTAMP TIMEOUT, 1500);
if (ERR_TIMEOUT == spcm dwSetParam_i32 (hDrv, SPC_TIMESTAMP CMD, SPC_TS_RESET))

printf ("Synchronization with external clock signal failed\n");

// now we read out the stored synchronization clock and date
int32 1SyncDate, 1SyncTime;

spcm_dwGetParam i32 (hDrv, SPC_TIMESTAMP STARTDATE, &lSyncDate);
spcm_dwGetParam i32 (hDrv, SPC_TIMESTAMP_ STARTTIME, &lSyncTime);

// and print the start date and time information (European format: day.month.year hour:minutes:seconds)
printf ("Start date: %$02d.%02d.%04d\n", lSyncDate & Oxff, (lSyncDate >> 8) & Oxff, (lSyncData >> 16) & Oxffff);
printf ("Start time: %02d:%02d:%02d\n", (1lSyncTime >> 16) & Oxff, (lSyncTime >> 8) & Oxff, 1SyncTime & Oxff);

Reading out the timestamps

General

The timestamps are stored in an extra FIFO that is located in hardware on the card. This extra FIFO can read out timestamps using DMA
transfer similar fo the DMA transfer of the main sample data DMA transfer. The card has two completely independent busmaster DMA engines
in hardware allowing the simultaneous transfer of both timestamp and sample data.

As seen in the picture the extra FIFO is holding ABA and timestamp data as the same time. Nevertheless it is not necessary fo care for the
shared FIFO as the extra FIFO data is splitted inside the driver in the both data parts.

von | | Applicatich Application Jcatidn Date Buffor
P ﬂnllwm b (sayeral GByte of PC memory)

The only part that is similar for both kinds of data transfer is the handling of the DMA engine. This is similar to the main sample data transfer
engine. Therefore additional information can be found in the chapter explaining the main data transfer.

Commands and Status information for extra transfer buffers.

As explained above the data transfer is performed with the same command and status registers like the card control and sample data transfer.
It is possible to send commands for card control, data transfer and extra FIFO data transfer at the same time

Register Value Direction Description
SPC_M2CMD 100 write only Executes a command for the card or data transfer
M2CMD_EXTRA_STARTDMA 100000h Starts the DMA transfer for an already defined buffer.
M2CMD_EXTRA_WAITDMA 200000h Waits until the data transfer has ended or until at least the amount of bytes defined by notify size are available. This
wait function also takes the timeout parameter into account.
M2CMD_EXTRA_STOPDMA 400000h Stops a running DMA transfer. Data is invalid afterwards.
M2CMD_EXTRA_POLL 800000h Polls data without using DMA. As DMA has some overhead and has been implemented for fast data transfer of large
amounts of data it is in some cases more simple to poll for available data. Please see the detailed examples for this
mode. It is not possible to mix DMA and polling mode.

The extra FIFO data transfer can generate one of the following status information:.

Register Value Direction Description
SPC_M2STATUS 110 read only Reads out the current status information
M2STAT_EXTRA_BLOCKREADY 1000h The next data block as defined in the notify size is available. It is at least the amount of data available but it also can

be more data.

M2STAT_EXTRA_END 2000h The data transfer has completed. This status information will only occur if the notify size is set to zero.

(c) Spectrum GmbH 11

Reading out the timestamps Option Timestamps

M2STAT_EXTRA_OVERRUN 4000h The data transfer had on overrun (acquisition) or underrun (replay) while doing FIFO transfer.

M2STAT_EXTRA_ERROR 8000h An internal error occurred while doing data transfer.

Data Transfer using DMA

Data transfer consists of two parts: the buffer definition and the commands/status information that controls the transfer itself. Extra data transfer
shares the command and status register with the card control, data transfer commands and status information.

The DMA based data transfer mode is activated as soon as the M2CMD_EXTRA_STARTDMA is given. Please see next chapter to see how
the polling mode works.

Definition of the transfer buffer

Before any data transfer can start it is necessary to define the transfer buffer with all it's details. The definition of the buffer is done with the
spcm_dwDefTransfer function as explained in an earlier chapter. The following example will show the definition of a transfer buffer for
timestamp data, definition for ABA data is similar:

spcm_dwDefTransfer 164 (hDrv, SPCM BUF TIMESTAMP, SPCM CARDTOPC, 0, pvBuffer, 0, 1lLenOfBufferInBytes);

In this example the notify size is set to zero, meaning that we don’t want to be notified until all extra data has been transferred. Please have
a look at the sample data transfer in an earlier chapter to see more details on the notify size.

Please note that extra data transfer is only possible from card to PC and there's no programmable offset available for this transfer.

Buffer handling

A data buffer handshake is implemented in the driver which allows to run the card in different data transfer modes. The software transfer
buffer is handled as one large buffer for each kind of data (timestamp and ABA) which is on the one side controlled by the driver and filled
automatically by busmaster DMA from the hardware extra FIFO buffer and on the other hand it is handled by the user who set's parts of this
software buffer available for the driver for further transfer. The handshake is fulfilled with the following 3 software registers:

Register Value Direction Description

SPC_ABA_AVAIL_USER_LEN 210 read This register contains the currently available number of bytes that are filled with newly transferred
slow ABA data. The user can now use this ABA data for own purposes, copy it, write it to disk or start
calculations with this data.

SPC_ABA_AVAIL_USER_POS 211 read The register holds the current byte index position where the available ABA bytes start. The register is
just intended to help you and to avoid own position calculation
SPC_ABA_AVAIL_CARD_LEN 212 write After finishing the job with the new available ABA data the user needs to tell the driver that this

amount of bytes is again free for new data to be transferred.

SPC_TS_AVAIL_USER_LEN 220 read This register contains the currently available number of bytes that are filled with newly transferred
timestamp data. The user can now use these timestamps for own purposes, copy it, write it to disk or
start calculations with the timestamps.

SPC_TS_AVAIL_USER_POS 221 read The register holds the current byte index position where the available timestamp bytes start. The reg-
ister is just intended to help you and to avoid own position calculation
SPC_TS_AVAIL_CARD_LEN 222 write After finishing the job with the new available timestamp data the user needs to tell the driver that this

amount of bytes is again free for new data to be transferred.

Directly after start of transfer the SPC_XXX_AVAIL_USER_LEN is every time zero as no data is available for the user and the
SPC_XXX_AVAIL_CARD_LEN is every time identical to the length of the defined buffer as the complete buffer is available for the card for

transfer.

The counter that is holding the user buffer available bytes (SPC_XXX_AVAIL USER_LEN) is sticking to the de-
fined notify size at the DefTransfer call. Even when less bytes already have been transferred you won’t get
notice of it if the notify size is programmed to a higher value.

Remarks

¢ The transfer between hardware FIFO buffer and application buffer is done with scatter-gather DMA using a busmaster DMA controller
located on the card. Even if the PC is busy with other jobs data is still transferred until the application buffer is completely used.

¢ As shown in the drawing above the DMA control will announce new data to the application by sending an event. Waiting for an event is
done internally inside the driver if the application calls one of the wait functions. Waiting for an event does not consume any CPU time
and is therefore highly requested if other threads do lot of calculation work. However it is not necessary to use the wait functions and one
can simply request the current status whenever the program has time to do so. When using this polling mode the announced available

112 M2i.20xx / M2i.20xx-exp Manual

Option Timestamps Reading out the timestamps

bytes still stick to the defined notify size!
¢ If the on-board FIFO buffer has an overrun data transfer is stopped immediately.

char* pcData = new char[lBufSizelInBytes];

// we now define the transfer buffer with the minimum notify size of one page = 4 kByte
spcm_dwDefTransfer 164 (hDrv, SPCM BUF TIMESTAMP, SPCM DIR CARDTOPC, 4096, (void*) pcData, 0, 1BufSizelInBytes);

do
{
// we wait for the next data to be available. After this call we get at least 4k of data to proceed
dwError = spcm_deetParam_i32 (hDrv, SPC_M2CMD, M2CMD_EXTRA STARTDMA | M2CMD_EXTRA_WAITDMA) ;

if (!dwError)

{

// 1f there was no error we can proceed and read out the current amount of available data
spcm_dwGetParam i32 (hDrv, SPC_TIMESTAMP AVAIL USER_LEN, &lAvailBytes);
spcm_dwGetParam i32 (hDrv, SPC_TIMESTAMP AVAIL USER POS, &lBytePos);

printf (“We now have %d new bytes available\n”, lAvailBytes);
printf (“The available data starts at position %d\n”, 1BytesPos):;

// we take care not to go across the end of the buffer
if ((1BytePos + 1lAvailBytes) >= 1lBufSizeInBytes)
lAvailBytes = 1BufSizeInBytes - 1BytePos;

// our do function get’s a pointer to the start of the available data section and the length
vProcessTimestamps (&pcData[lBytesPos], lAvailBytes);

// the buffer section is now immediately set available for the card
spcm_dwSetParam i32 (hDrv, SPC_TIMESTAMP AVAIL CARD LEN, lAvailBytes);
}

}

while (!dwError); // we loop forever if no error occurs

the hardware using busmaster DMA this is not critical as long as the application data buffers are large

The extra FIFO has a quite small size compared to the main data buffer. As the transfer is done initiated by f
enough and as long as the extra transfer is started BEFORE starting the card.

Data Transfer using Polling

The Polling mode needs driver version V1.25 and firmware version V11 to run. Please update your system A
to the newest versions to run this mode.

If the extra data is quite slow and the delay caused by the notify size on DMA transfers is inacceptable for your application it is possible to
use the polling mode. Please be aware that the polling mode uses CPU processing power to get the data and that there might be an overrun
if your CPU is otherwise busy. You should only use polling mode in special cases and if the amount of data to transfer is not too high.

Most of the functionality is similar to the DMA based transfer mode as explained above.

The polling data transfer mode is activated as soon as the M2CMD_EXTRA_POLL is executed.

Definition of the transfer buffer
is similar to the above explained DMA buffer transfer. The value ,notify size” is ignored and should be set to 4k (4096).

Buffer handling

The buffer handling is also similar to the DMA transfer. As soon as one of the registers SPC_TS_AVAIL_USER_LEN or
SPC_ABA_AVAIL_USER_LEN is read the driver will read out all available data from the hardware and will return the number of bytes that
has been read. In minimum this will be one DWORD = 4 bytes.

(c) Spectrum GmbH 113

Reading out the timestamps Option Timestamps

Buffer handling example for polling timestamp transfer (ABA transfer is similar, just using other registers)

char* pcData = new char[lBufSizelInBytes];

// we now define the transfer buffer with the minimum notify size of one page = 4 kByte
spcm_dwDefTransfer i64 (hDrv, SPCM BUF_TIMESTAMP, SPCM_DIR_CARDTOPC, 4096, (void*) pcData, 0, 1lBufSizelInBytes);

// we start the polling mode
dwError = spcm_deetParam_i32 (hDrv, SPC_M2CMD, M2CMD_EXTRA POLL) ;

// this is pur polling loop

do
{
spcm_dwGetParam i32 (hDrv, SPC_TIMESTAMP_ AVAIL USER_LEN, &lAvailBytes);
spcm_deetParam_i32 (hDrv, SPC_TIMESTAMP AVAIL USER POS, &lBytePos);

if (lAvailBytes > 0)
{
printf (“We now have %d new bytes available\n”, 1lAvailBytes);
printf (“The available data starts at position %d\n”, 1BytesPos);

// we take care not to go across the end of the buffer
if ((1BytePos + 1lAvailBytes) >= 1BufSizeInBytes)
1AvailBytes = 1BufSizeInBytes - 1BytePos;

// our do function get’s a pointer to the start of the available data section and the length
vProcessTimestamps (&pcData[lBytesPos], lAvailBytes);

// the buffer section is now immediately set available for the card
spcm_dwSetParam i32 (hDrv, SPC_TIMESTAMP AVAIL CARD_LEN, lAvailBytes);
}

}

while (!dwError); // we loop forever if no error occurs

Comparison of DMA and polling commands
This chapter shows you how small the difference in programming is between the DMA and the polling mode:

DMA mode Polling mode
Define the buffer spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_TIMESTAMP, SPCM_DRR...); spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_TIMESTAMP, SPCM_DIRR...);
Start the transfer spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_EXTRA_STARTDMA) spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_EXTRA_POLL)
Wait for data spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_EXTRA_WAITDMA) not in polling mode
Available bytes? spcm_dwGetParam_i32 (hDrv, SPC_TIMESTAMP_AVAIL_USER_LEN, &IBytes); spcm_dwGetParam_i32 (hDrv, SPC_TIMESTAMP_AVAIL_USER_LEN, &IBytes);
Min available bytes | programmed notify size 4 bytes
Current position? specm_dwGetParam_i32 (hDrv, SPC_TIMESTAMP_AVAIL_USER_LEN, &IBytes); spcm_dwGetParam_i32 (hDrv, SPC_TIMESTAMP_AVAIL_USER_LEN, &IBytes);
Free buffer for card | spcm_dwSetParam_i32 (hDrv, SPC_TIMESTAMP_AVAIL_CARD_LEN, IBytes); spcm_dwSetParam_i32 (hDrv, SPC_TIMESTAMP_AVAIL_CARD_LEN, [Bytes);

Data format

Each timestamp is 56 bit long and internally mapped to 64 bit (8 bytes). The counter value contains the number of clocks that have been
recorded with the currently used sampling rate since the last counter-reset has been done. The matching time can easily be calculated as
described in the general information section at the beginning of this chapter.

The values the counter is counting and that are stored in the timestamp FIFO represent the moments the trigger event occures internally. Com-
pared to the real external trigger event, these values are delayed. This delay is fix and therefore can be ignored, as it will be identically for
all recordings with the same setup.

Standard data format

When internally mapping the timestamp from 56 bit to a 64 bit value the leading 8 bits are filled up with zeros (as a sign extension for
positive values), to have the stamps ready for calculations as a unsigned 64 bit wide integer value.

Timestamp Mode 8'h byte 7 byte | 6" byte | 5t byte | 4™ byte | 3 byte | 2"d byte | 1% byte
Standard/StartReset Oh 56 bit wide Timestamp
Refclock mode Oh 24 bit wide Refclock edge counter (seconds counter) | 32bit wide sample counter

Extended BaseXIO data format

Sometimes it is usefull fo store the level of additional external static signals together with a recording, such as e.g. control inputs of an external
input multiplexer or settings of an external. When programming a special flag the upper byte of every 64 bit timestamp value is not (as in

standard data mode) filled up with leading zeros, but with the values of the BaseXIO digital inputs. The following table shows the resulting
64 bit timestamps.

Timestamp Mode 8™ byte 7' byte | 6'" byte | 5% byte | 4 byte | 34 byte | 2" byte | 1% byte
Standard / StartReset XIO7...XIO0 56 bit wide Timestamp
Refclock mode XIO7...XIO0 24 bit wide Refclock edge counter (seconds counter) | 32bit wide sample counter

This special sampling option requires the option BaseXIO to be installed. All enhanced timestamps are not
longer integer 64 values. Before using these stamps for calculations (such as difference between two stamps)

114 M2i.20xx / M2i.20xx-exp Manual

Option Timestamps Reading out the timestamps

one has to mask out the leading byte of the stamps first.

Selecting the timestamp data format
The selection between the different data format for the timestamps is done with a flag that is written to the timestamp command register. As
this register tis organized a biffield, the data format selection is available for all possible timestamp modes.

Register Value Direction Description

SPC_TIMESTAMP_CMD 47100 r/w
SPC_TSXIOACQ_ENABLE 4096 Enables the trigger synchronous acquisition of the BaseXIO inputs with every stored timestamp in the upper byte.
SPC_TSXIOACQ_DISABLE 0 The timestamp is filled up with leading zeros as a sign extension for positive values.

(c) Spectrum GmbH 115

Combination of Multiple Recording and Gated Sampling with Timestamps Option Timestamps

Combination of Multiple Recording and Gated Sampling with Timestamps

This topic should give you a brief overview how the timestamp option interacts with the both options Multiple Recording and Gated Sampling
for which the timestamps option has been made.

Multiple Recording and Timestamps

Multiple Recording is well matching with the timestamp option. If imestamp Start
recording is activated each trigger event and therefore each Multiple Re-
cording segment will get timestamped as shown in the drawing on the right.

éTﬁggerl ;Tﬁggerz ;Tﬁgger3
Trigger ’_l | ,_|

Please keep in mind that the trigger events are timestamped, not the begin- Input —%%7“%%@

ning of the acquisition. The first sample that is available is at the time position :
of [Timestamp - Pretrigger]. Stamp] |

Stamp2
The programming details of the timestamp option is explained in an extra i Stamp3

chapter.

Example Multiple Recording and Timestamps

The following example shows the setup of the Multiple Recording mode together with activated timestamps recording and a short display of
the acquired timestamps. The example doesn’t care for the acquired data itself and doesn’t check for error:

// setup of the Multiple Recording mode

spcm_dwSetParam i32 (hDrv, SPC_CARDMODE, SPC_REC_STD_MULTI) ; // Enables Standard Multiple Recording
spcm_dwSetParam_ i32 (hDrv, SPC_SEGMENTSIZE, 1024); // Segment size is 1 kSample, Posttrigger is 768
spcm_dwSetParam i32 (hDrv, SPC_POSTTRIGGER, 768) ; // samples and pretrigger therefore 256 samples.
spcm_dwSetParam i32 (hDrv, SPC_MEMSIZE, 4096) ; // 4 kSamples in total acquired -> 4 segments

// setup the Timestamp mode and make a reset of the timestamp counter
spcm_dwSetParam i32 (hDrv, SPC_TIMESTAMP_ CMD, SPC_TSMODE_STANDARD | SPC_TSCNT_INTERNAL) ;
spcm_dwSetParam_i32 (hDrv, SPC_TIMESTAMP CMD, SPC_TSMODE_ RESET) ;

// now we define a buffer for timestamp data and start acquistion, each timestamp is 64 bit = 8 bytes
int64* pllStamps = new int64[4];

spcm_dwDefTransfer_ i64 (hDrv, SPCM BUF_ TIMESTAMP, SPCM_DIR_CARDTOPC, 0, (void*) pllStamps, 0, 4 * 8);
spcm_dwSetParam i32 (hDrv, SPC_M2CMD, M2CMD_CARD_START | M2CMD_CARD_ENABLETRIGGER | M2CMD_EXTRA STARTDMA) ;

// we wait for the end timestamps transfer which will be received if all segments have been recorded
spcm_deetParam_iBZ (hDrv, SPC_M2CMD, M2CMD_EXTRA WAITDMA) ;

// as we now have the timestamps we just print them and calculate the time in milli seconds
int32 l1lSamplerate, 1lOver, i;
spcm_dwGetParam_i32 (hDrv, SPC_SAMPLERATE, &lSamplerate);
spcm_dwGetParam i32 (hDrv, SPC_OVERSAMPLINGFACTOR, &lOver);
for (1 = 0; 1 < 4; i++)
printf ("#%d: %I64d samples = %.3f ms\n", i, pllStamps([i], 1000.0 * pllStamps[i] / lSamplerate / lOver);

Gated Sampling and Timestamps

Gated Sampling and the timestamp option fit very good together. If timestamp
recording is activated each gate will get timestamped as shown in the draw-
Gate E

Pre: Post

ing on the right. As you can see both, beginning and end of the gate interval
are timestamped. Each gate segment will therefore produce two timestamps

showing start of the gate interval and end of the gate interval. By taking both Input - -
timestamps into account one can read out the time position of each gate as Ty :
: ! ; ampl > | -
well as the length in samples. There is no other way to examine the length of < Siampz > ¢ :
each gate segment than reading out the timestamps. [Stamp3 :
Siampd :
. mp |

Please keep in mind that the gate signals are timestamped, not the beginning Stampé

and end of the acquisition. The first sample that is available is at the time po-

sition of [Timestamp1 - Pretrigger]. The last sample of the gate segment is at the position [Timestamp2 + Postirigger]. The length of the gate
segment is [Timestamp2 - Timestamp1 + Pretrigger + Postirigger]. When using the standard gate mode the end of recording is defined by
the expiring memsize counter. Therefore there is no end of gate timestamp for the last gate segment!

The programming details of the timestamp option is explained in an extra chapter.

116 M2i.20xx / M2i.20xx-exp Manual

Option Timestamps Gated Sampling and Timestamps

Example Gated Sampling and Timestamps

The following example shows the setup of the Gated Sampling mode together with activated timestamps recording and a short display of the
the acquired timestamps. The example doesn't care for the acquired data itself and doesn’t check for error:

// setup of the Gated Sampling mode
spcm dwSetParam i32 (hDrv, SPC CARDMODE, SPC REC STD GATE) ; // Enables Standard Gated Sampling

spcm_dwSetParam_i32 (hDrv, SPC_PRETRIGGER, 32); // 32 samples to acquire before gate start
spcm_dwSetParam_i32 (hDrv, SPC_POSTTRIGGER, 32) ; // 32 samples to acquire before gate end
spcm dwSetParam i32 (hDrv, SPC MEMSIZE, 4096) ; // 4 kSamples in total acquired

// setup the Timestamp mode and make a reset of the timestamp counter
SpcmﬁdeetParamﬁi32 (hDrv, SPC_TIMESTAMP CMD, SPC_TSMODE_ STANDARD | SPC_TSCNT_INTERNAL) ;
spcm_dwSetParam i32 (hDrv, SPC_TIMESTAMP CMD, SPC_TSMODE RESET);

// now we define a buffer for timestamp data and start acquistion, each timestamp is 64 bit = 8 bytes

// as we don’t know the number of gate intervals we define the buffer quite large

int64* pllStamps = new int64[1000];

spcm_dwDefTransfer 164 (hDrv, SPCM BUF TIMESTAMP, SPCM DIR CARDTOPC, 0, (void*) pllStamps, 0, 1000 * 8);
spcm_dwSetParam i32 (hDrv, SPC_M2CMD, M2CMD_CARD_START | M2CMD_CARD_ENABLETRIGGER | M2CMD_EXTRA STARTDMA) ;

// we wait for the end of timestamps transfer and read out the number of timestamps that have been acquired
int32 1lAvailTimestampBytes;

spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_EXTRA WAITDMA) ;

spcm_dwSetParam i32 (hDrv, SPC_TS_AVAIL USER_LEN, &lAvailTimestampBytes);

// as we now have the timestamps we just print them and calculate the time in milli seconds
int32 l1lSamplerate, 1lOver, 1i;

spcm_dwGetParam i32 (hDrv, SPC_SAMPLERATE, &lSamplerate);

spcm_dwGetParam_i32 (hDrv, SPC_OVERSAMPLINGFACTOR, &lOver);

// each 1lst timestamp is the starting position of the gate segment, each 2nd the end position
for (i = 0; (i < (lAvailTimestampBytes / 8)) && (1 < 1000); i++)
if ((1 % 2) == 0)
printf ("#%d: %$I64d samples = %.3f ms", i, pllStamps[i], 1000.0 * pllStamps[i] / lSamplerate / 1lOver);
else
printf (" (Len = %I64d samples)\n", (pllStamps([i] - pllStamps[i - 1] + 64));

(c) Spectrum GmbH 117

General information Option ABA mode (dual timebase)

Option ABA mode (dual timebase)

General information

The ABA option allows the acquisition of data with a dual timebase. In case of trigger event the inputs are sampled very fast with the pro-
grammed sampling rate. This part is similar to the Multiple Recording option. But instead of having no data in between the segments one has
the opportunity to continuously sample the inputs with a slower sampling rate the whole time. Combining this with the recording of the
timestamps gives you a complete acquisition with a dual timebase as shown in the drawing.

- Pre : Post :
Trigger :
: rr[l_l‘ fl E
: I’ l J L\ ‘.“1}\ :'\/\ 2 Al s -k, A
Input 5\“{1 AT e
(ffl :
4 ¥ :
~— A —>4 B)é: A >

As seen in the drawing the area around the trigger event is sampled between pretrigger and postirigger with full sampling speed (area B of
the acquisition). Outside of this area B the input is sampled with the slower ABA clock (area A of the acquisition). As changing sampling
clock on the fly is not possible there is no real change in the sampling speed but area A runs continuously with a slow sampling speed without
stopping when the fast sampling takes place. As a result one get's a continuous slow sampled acquisition (area A) with some fast sampled
parts (area B)

The ABA mode is available for standard recording as well as for FIFO recording. In case of FIFO recording ABA and the acquisition of the
fast sampled segments will run continuously until it is stopped by the user.

A second possible application for the ABA mode is the use of the ABA data for slow monitoring of the inputs while waiting for an acquisition.
In that case one wouldn’t record the timestamps but simply monitor the current values by acquiring ABA data.

The ABA mode needs a second clock base. As explained above the acquisition is not changing the sampling clock but runs the slower ac-
quisition with a divided clock. The divider value can be programmed with the following register

Register Value Direction Description

SPC_SEGMENTSIZE 10010 read/write Size of one Multiple Recording segment: the number of samples to be record after each trigger event.
SPC_POSTRIGGER 10030 read/write Defines the number of samples to be record after each trigger event.

SPC_ABADIVIDER 10040 read/write Programs the divider which is used to sample slow ABA data between 2 and 65535

The resulting ABA clock is then calculated by sampling rate / ABA divider.

Each segment can consist of pretrigger and/or posttrigger samples. The user always has to set the total segment size and the postirigger,
while the pretrigger is calculated within the driver with the formula: [pretrigger] = [segment size] - [posttrigger].

When using ABA mode or Multiple Recording the maximum pretrigger is limited depending on the number
A of active channels. When the calculated value exceeds that limit, the driver will return the error
ERR_PRETRIGGERLEN.

Standard Mode

With every detected trigger event one data block is filled with data. The length of one ABA segment is set by the value of the segmentsize
register. The total amount of samples to be recorded is defined by the memsize register.

Memsize must be set to a a multiple of the segment size. The table below shows the register for enabling standard ABA mode. For detailed
information on how to setup and start the standard acquisition mode please refer to the according chapter earlier in this manual.

Register Value Direction Description
SPC_CARDMODE 9500 read/write Defines the used operating mode
SPC_REC_STD_ABA 8h Data acquisition to on-board memory for multiple trigger events. While the multiple trigger events are stored with pro-

grammed sampling rate the inputs are sampled continuously with a slower sampling speed. This mode is only avail-
able if the ABA mode option is installed. The mode is described in a special chapter about ABA mode option.

118 M2i.20xx / M2i.20xx-exp Manual

Option ABA mode (dual timebase) General information

The total number of samples to be recorded to the on-board memory in standard mode is defined by the SPC_MEMSIZE register.

Register Value Direction Description
SPC_MEMSIZE 10000 read/write Defines the total number of samples to be recorded.
FIFO Mode

The ABA FIFO Mode is similar to the Multiple Recording FIFO mode. In contrast to the standard mode it is not necessary to program the
number of samples to be recorded. The acquisition is running until the user stops it. The data is read block by block by the driver as described
under Single FIFO mode example earlier in this manual. These blocks are online available for further data processing by the user program.
This mode significantly reduces the average data transfer rate on the PCl bus. This enables you to use faster sample rates then you would be
able to in FIFO mode without ABA.

Register Value Direction Description
SPC_CARDMODE 9500 read/write Defines the used operating mode
SPC_REC_FIFO_ABA 80h Continuous data acquisition for multiple trigger events together with continuous data acquisition with a slower sam-
pling clock. Only available if ABA mode option is installed

The number of segments to be recorded must be set separately with the register shown in the following table:

Register Value Direction Description

SPC_LOOPS 10020 read/write Defines the number of segments to be recorded
0 Recording will be infinite until the user stops it.
1...[4G-1] Defines the total segments to be recorded.

Limits of pre trigger, post trigger, memory size

The maximum memory size parameter is only limited by the number of activated channels and by the amount of installed memory. Please
keep in mind that each samples needs 1 byte of memory to be stored. Minimum memory size as well as minimum and maximum post trigger
limits are independent of the activated channels or the installed memory.

Due to the internal organization of the card memory there is a certain stepsize when setting these values that has to be taken into account.
The following table gives you an overview of all limits concerning pre trigger, post trigger, memory size, segment size and loops. The table
shows all values in relation to the installed memory size in samples. If more memory is installed the maximum memory size figures will increase
according to the complete installed memory

Activated Used Memory size Pre trigger Post trigger Segment size Loops
Channels Mode SPC_MEMSIZE SPC_PRETRIGGER SPC_POSTTRIGGER SPC_SEGMENTSIZE SPC_LOOPS
Min Max Step Min | Max | Step Min Max Step Min | Max | Step Min | Max | Step

1 channel Standard Single 8 Mem 4 defined by post trigger [4 8G-4 4 not used not used
Standard Multi/ABA | 8 Mem 4 4 16k-32 | 4 4 Mem/2-4 | 4 8 |Mem/2 |4 not used
Standard Gate 8 Mem 4 4 16k-32 |4 4 Mem-4 4 not used not used
FIFO Single not used 4 16k-32 |4 not used 8 | 8G-4 | 4 0(x) |4G-1 1
FIFO Multi/ABA not used 4 16k-32 | 4 4 8G-4 4 8 8G-4 4 0(x) |4G-1 1
FIFO Gate not used 4 16k-32 |4 4 8G -4 4 not used 0 (o) |4G-1 1

2 channels | Standard Single 8 Mem/2 |4 defined by post trigger | 4 8G-4 4 not used not used
Standard Multi/ABA | 8 Mem/2 | 4 4 8k-16 |4 4 Mem/4-4 | 4 8 |Mem/4 |4 not used
Standard Gate 8 Mem/2 4 4 8k-16 4 4 Mem/2-4 | 4 not used not used
FIFO Single not used 4 8k-16 |4 not used 8 | 8G-4 | 4 0(x) |4G-1 1
FIFO Multi/ABA not used 4 8k-16 4 4 8G-4 4 8 8G-4 4 0 (o) [4G-1 1
FIFO Gate not used 4 8k-16 4 4 8G -4 4 not used 0 (o) |4G-1 1

4 channels | Standard Single 8 Mem/4 |4 defined by post trigger | 4 8G-4 4 not used not used
Standard Multi/ABA | 8 Mem/4 4 4 4k - 8 4 4 Mem/8-4 | 4 8 | Mem/8 | 4 not used
Standard Gate 8 Mem/4 |4 4 4k - 8 4 4 Mem/4-4 | 4 not used not used
FIFO Single not used 4 4k -8 4 not used 8 | 8G-4 | 4 0(x) |4G-1 1
FIFO Multi/ABA not used 4 4k - 8 4 4 8G-4 4 8 8G-4 4 0 (o) [4G-1 1
FIFO Gate not used 4 4k - 8 4 4 8G-4 4 not used 0(x) |4G-1 1

All figures listed here are given in samples. An entry of [8k - 16] means [8 kSamples - 16] = [8192 - 16] = 8176 samples.

The given memory and memory / divider figures depend on the installed on-board memory as listed below:

Installed Memory
64 Msample 128 MSample 256 MSample 512 MSample 1 GSample 2 GSample 4 GSample
Mem 64 MSample 128 MSample 256 MSample 512 MSample 1 GSample 2 GSample 4 GSample
Mem / 2 32 MSample 64 MSample 128 MSample 256 MSample 512 MSample 1 GSample 2 GSample
Mem / 4 16 MSample 32 MSample 64 MSample 128 MSample 256 MSample 512 MSample 1 GSample
Mem / 8 8 MSample 16 MSample 32 MSample 64 MSample 128 MSample 256 MSample 512 MSample

Please keep in mind that this table shows all values at once. Only the absolute maximum and minimum values are shown. There might be
additional limitations. Which of these values is programmed depends on the used mode. Please read the detailed documentation of the mode.

(c) Spectrum GmbH 119

Reading out ABA data Option ABA mode (dual timebase)

Example for setting ABA mode:

The following example will program the standard ABA mode, will set the fast sampling rate to 100 MHz and acquire 2k segments with Tk
pretrigger and Tk postirigger on every rising edge of the trigger input. Meanwhile the inputs are sampled continuously with the ABA mode
with a ABA divider set to 5000 resulting in a slow sampling clock for the A area of 100 MHz / 5000 = 20 kHz:

// setting the fast sampling clock as internal 100 MHz
spcm_dwSetParam i32 (hDrv, SPC CLOCKMODE, SPC CM INTPLL);
spcm_dwSetParam i32 (hDrv, SPC_SAMPLERATE, 100000000);

// enable the ABA mode and set the ABA divider to 5000 -> 100 MHz / 5000 = 20 kHz
spcm_dwSetParam i32 (hDrv, SPC_CARDMODE, SPC_REC_STD_ABA);
spcm_dwSetParam i32 (hDrv, SPC_ABADIVIDER, 5000);

// define the segmentsize, pre and posttrigger and the total amount of data to acquire
spcm_dwSetParam i32 (hDrv, SPC_MEMSIZE, 16384);

spcm_dwSetParam i32 (hDrv, SPC_SEGMENTSIZE, 2048);

spcm_dwSetParam i32 (hDrv, SPC_POSTTRIGGER, 1024);

// set the trigger mode to external with positive edge
spcm_dwSetParam i32 (hDrv, SPC_TRIG_ORMASK, SPC_TMASK_EXTO) ;
spcm_dwSetParam 132 (hDrv, SPC_TRIG_EXTO MODE, SPC_TM POS);

Reading out ABA data

General

The slow ,A” data is stored in an extra FIFO that is located in hardware on the card. This extra FIFO can read out slow ,A” data using DMA
transfer similar to the DMA transfer of the main sample data DMA transfer. The card has two completely independent busmaster DMA engines

in hardware allowing the simultaneous transfer of both ,A” and sample data. The sample data itself is read out as explained before using
the standard DMA routine.

As seen in the picture the extra FIFO is holding ABA and timestamp data as the same time. Nevertheless it is not necessary fo care for the
shared FIFO as the extra FIFO data is splitted inside the driver in the both data parts.

DMA Contrel
Engine

Data Buffer
eral GByte of PC memory)

The only part that is similar for both kinds of data transfer is the handling of the DMA engine. This is similar to the main sample data transfer
engine. Therefore additional information can be found in the chapter explaining the main data transfer.

Commands and Status information for exira transfer buffers.

As explained above the data transfer is performed with the same command and status registers like the card control and sample data transfer.
It is possible to send commands for card control, data transfer and extra FIFO data transfer at the same time

Register Value Direction Description
SPC_M2CMD 100 write only Executes a command for the card or data transfer
M2CMD_EXTRA_STARTDMA 100000h Starts the DMA transfer for an already defined buffer.
M2CMD_EXTRA_WAITDMA 200000h Waits until the data transfer has ended or until at least the amount of bytes defined by notify size are available. This
wait function also takes the timeout parameter into account.
M2CMD_EXTRA_STOPDMA 400000h Stops a running DMA transfer. Data is invalid afterwards.
M2CMD_EXTRA_POLL 800000h Polls data without using DMA. As DMA has some overhead and has been implemented for fast data transfer of large
amounts of data it is in some cases more simple to poll for available data. Please see the detailed examples for this
mode. It is not possible to mix DMA and polling mode.

120 M2i.20xx / M2i.20xx-exp Manual

Option ABA mode (dual timebase) Reading out ABA data

The extra FIFO data transfer can generate one of the following status information:.

Register Value Direction Description
SPC_M2STATUS 110 read only Reads out the current status information
M2STAT_EXTRA_BLOCKREADY 1000h The next data block as defined in the notify size is available. It is at least the amount of data available but it also can
be more data.
M2STAT_EXTRA_END 2000h The data transfer has completed. This status information will only occur if the notify size is set to zero.
M2STAT_EXTRA_OVERRUN 4000h The data transfer had on overrun (acquisition) or underrun (replay) while doing FIFO transfer.
M2STAT_EXTRA_ERROR 8000h An internal error occurred while doing data transfer.

Data Transfer using DMA

Data transfer consists of two parts: the buffer definition and the commands/status information that controls the transfer itself. Extra data transfer
shares the command and status register with the card control, data transfer commands and status information.

The DMA based data transfer mode is activated as soon as the M2CMD_EXTRA_STARTDMA is given. Please see next chapter to see how
the polling mode works.

Definition of the transfer buffer

Before any data transfer can start it is necessary to define the transfer buffer with all it's details. The definition of the buffer is done with the
spcm_dwDefTransfer function as explained in an earlier chapter. The following example will show the definition of a transfer buffer for
timestamp data, definition for ABA data is similar:

spcm_dwDefTransfer 164 (hDrv, SPCM BUF_TIMESTAMP, SPCM _CARDTOPC, 0, pvBuffer, 0, 1lLenOfBufferInBytes);

In this example the notify size is set to zero, meaning that we don’t want to be notified until all extra data has been transferred. Please have
a look at the sample data transfer in an earlier chapter to see more details on the notify size.

Please note that extra data transfer is only possible from card to PC and there’s no programmable offset available for this transfer.

Buffer handling

A data buffer handshake is implemented in the driver which allows to run the card in different data transfer modes. The software transfer
buffer is handled as one large buffer for each kind of data (timestamp and ABA) which is on the one side controlled by the driver and filled
automatically by busmaster DMA from the hardware extra FIFO buffer and on the other hand it is handled by the user who set's parts of this
software buffer available for the driver for further transfer. The handshake is fulfilled with the following 3 software registers:

Register Value Direction Description

SPC_ABA_AVAIL_USER_LEN 210 read This register contains the currently available number of bytes that are filled with newly transferred
slow ABA data. The user can now use this ABA data for own purposes, copy it, write it to disk or start
calculations with this data.

SPC_ABA_AVAIL_USER_POS 211 read The register holds the current byte index position where the available ABA bytes start. The register is
just intended to help you and to avoid own position calculation

SPC_ABA_AVAIL_CARD_LEN 212 write After finishing the job with the new available ABA data the user needs to tell the driver that this
amount of bytes is again free for new data to be transferred.

SPC_TS_AVAIL_USER_LEN 220 read This register contains the currently available number of bytes that are filled with newly transferred

timestamp data. The user can now use these timestamps for own purposes, copy it, write it to disk or
start calculations with the timestamps.

SPC_TS_AVAIL_USER_POS 221 read The register holds the current byte index position where the available timestamp bytes start. The reg-
ister is just intended to help you and to avoid own position calculation
SPC_TS_AVAIL_CARD_LEN 222 write Atter finishing the job with the new available timestamp data the user needs to tell the driver that this

amount of bytes is again free for new data to be transferred.

Directly after start of transfer the SPC_XXX_AVAIL_USER_LEN is every time zero as no data is available for the user and the
SPC_XXX_AVAIL_CARD_LEN is every time identical to the length of the defined buffer as the complete buffer is available for the card for

transfer.

The counter that is holding the user buffer available bytes (SPC_XXX_AVAIL USER_LEN) is sticking to the de-
fined notify size at the DefTransfer call. Even when less bytes already have been transferred you won’t get A
notice of it if the notify size is programmed to a higher value.

Remarks

¢ The transfer between hardware FIFO buffer and application buffer is done with scatter-gather DMA using a busmaster DMA controller
located on the card. Even if the PC is busy with other jobs data is still transferred until the application buffer is completely used.

¢ As shown in the drawing above the DMA control will announce new data fo the application by sending an event. Waiting for an event is
done internally inside the driver if the application calls one of the wait functions. Waiting for an event does not consume any CPU time
and is therefore highly requested if other threads do lot of calculation work. However it is not necessary to use the wait functions and one
can simply request the current status whenever the program has time to do so. When using this polling mode the announced available

(c) Spectrum GmbH 121

Reading out ABA data Option ABA mode (dual timebase)

bytes still stick to the defined notify size!
¢ If the on-board FIFO buffer has an overrun data transfer is stopped immediately.

char* pcData = new char[lBufSizelInBytes];

// we now define the transfer buffer with the minimum notify size of one page = 4 kByte
spcm_dwDefTransfer 164 (hDrv, SPCM BUF TIMESTAMP, SPCM DIR CARDTOPC, 4096, (void*) pcData, 0, 1BufSizelInBytes);

do
{
// we wait for the next data to be available. After this call we get at least 4k of data to proceed
dwError = spcm_deetParam_i32 (hDrv, SPC_M2CMD, M2CMD_EXTRA STARTDMA | M2CMD_EXTRA_WAITDMA) ;

if (!dwError)

{

// 1f there was no error we can proceed and read out the current amount of available data
spcm_dwGetParam i32 (hDrv, SPC_TIMESTAMP AVAIL USER_LEN, &lAvailBytes);
spcm_dwGetParam i32 (hDrv, SPC_TIMESTAMP AVAIL USER POS, &lBytePos);

printf (“We now have %d new bytes available\n”, lAvailBytes);
printf (“The available data starts at position %d\n”, 1BytesPos):;

// we take care not to go across the end of the buffer
if ((1BytePos + 1lAvailBytes) >= 1lBufSizeInBytes)
lAvailBytes = 1BufSizeInBytes - 1BytePos;

// our do function get’s a pointer to the start of the available data section and the length
vProcessTimestamps (&pcData[lBytesPos], lAvailBytes);

// the buffer section is now immediately set available for the card
spcm_dwSetParam i32 (hDrv, SPC_TIMESTAMP AVAIL CARD LEN, lAvailBytes);
}

}

while (!dwError); // we loop forever if no error occurs

The extra FIFO has a quite small size compared to the main data buffer. As the transfer is done initiated by
the hardware using busmaster DMA this is not critical as long as the application data buffers are large
enough and as long as the extra transfer is started BEFORE starting the card.

Data Transfer using Pollin

A The Polling mode needs driver version V1.25 and firmware version V11 to run. Please update your system
to the newest versions to run this mode.

If the extra data is quite slow and the delay caused by the notify size on DMA transfers is inacceptable for your application it is possible to
use the polling mode. Please be aware that the polling mode uses CPU processing power to get the data and that there might be an overrun
if your CPU is otherwise busy. You should only use polling mode in special cases and if the amount of data to transfer is not too high.

Most of the functionality is similar to the DMA based transfer mode as explained above.

The polling data transfer mode is activated as soon as the M2CMD_EXTRA_POLL is executed.

Definition of the transfer buffer
is similar to the above explained DMA buffer transfer. The value ,notify size” is ignored and should be set to 4k (4096).

Buffer handling

The buffer handling is also similar to the DMA transfer. As soon as one of the registers SPC_TS_AVAIL_USER_LEN or
SPC_ABA_AVAIL_USER_LEN is read the driver will read out all available data from the hardware and will return the number of bytes that
has been read. In minimum this will be one DWORD = 4 bytes.

122 M2i.20xx / M2i.20xx-exp Manual

Option ABA mode (dual timebase) Reading out ABA data

char* pcData = new char[lBufSizelInBytes];

// we now define the transfer buffer with the minimum notify size of one page = 4 kByte
spcm_dwDefTransfer i64 (hDrv, SPCM BUF_TIMESTAMP, SPCM_DIR_CARDTOPC, 4096, (void*) pcData, 0, 1lBufSizelInBytes);

// we start the polling mode
dwError = spcm _dwSetParam i32 (hDrv, SPC_M2CMD, M2CMD_ EXTRA POLL) ;

// this is pur polling loop

do
{
spcm_dwGetParam i32 (hDrv, SPC_TIMESTAMP_ AVAIL USER_LEN, &lAvailBytes);
spcm_dwGetParam i32 (hDrv, SPC_TIMESTAMP AVAIL USER_POS, &lBytePos);

if (lAvailBytes > 0)
{
printf (“We now have %d new bytes available\n”, 1lAvailBytes);
printf (“The available data starts at position %d\n”, 1BytesPos);

// we take care not to go across the end of the buffer
if ((1BytePos + 1lAvailBytes) >= 1lBufSizeInBytes)
1AvailBytes = 1BufSizeInBytes - 1BytePos;

// our do function get’s a pointer to the start of the available data section and the length
vProcessTimestamps (&pcData[lBytesPos], lAvailBytes);

// the buffer section is now immediately set available for the card
spcm_dwSetParam i32 (hDrv, SPC_TIMESTAMP_ AVAIL CARD_LEN, lAvailBytes);
}

}

while (!dwError); // we loop forever if no error occurs

Comparison of DMA and polling commands
This chapter shows you how small the difference in programming is between the DMA and the polling mode:

DMA mode Polling mode
Define the buffer spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_TIMESTAMP, SPCM_DRR...); spcm_dwDefTransfer_i64 (hDrv, SPCM_BUF_TIMESTAMP, SPCM_DIRR...);
Start the transfer spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_EXTRA_STARTDMA) spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_EXTRA_POLL)
Wait for data spcm_dwSetParam_i32 (hDrv, SPC_M2CMD, M2CMD_EXTRA_WAITDMA) not in polling mode
Available bytes? spcm_dwGetParam_i32 (hDrv, SPC_TIMESTAMP_AVAIL_USER_LEN, &IBytes); spcm_dwGetParam_i32 (hDrv, SPC_TIMESTAMP_AVAIL_USER_LEN, &IBytes);
Min available bytes | programmed notify size 4 bytes
Current position? specm_dwGetParam_i32 (hDrv, SPC_TIMESTAMP_AVAIL_USER_LEN, &IBytes); spcm_dwGetParam_i32 (hDrv, SPC_TIMESTAMP_AVAIL_USER_LEN, &IBytes);
Free buffer for card | spcm_dwSetParam_i32 (hDrv, SPC_TIMESTAMP_AVAIL_CARD_LEN, IBytes); spcm_dwSetParam_i32 (hDrv, SPC_TIMESTAMP_AVAIL_CARD_LEN, [Bytes);

(c) Spectrum GmbH 123

Introduction Option BaseXIO

Option BaseXIO

Introduction

With this simpleto-use versatile enhancement it is possible to control a wide range of external instruments or other equipment. Therefore you
have up to eight asynchronous digital I/Os available. When using the BaseXIO lines as digital 1/O, they are completely independent from
the board’s function, data direction or sampling rate and directly controlled by software (asynchronous 1/Os).

Using the option BaseXIO this way is useful if external equipment should be digitally controlled or any kind of signal source must be pro-
grammed. It also can be used if status information from an external machine has to be obtained or different test signals have to be routed to
the board. In addition to the asynchronous 1/O function, some of these lines can have special purposes such as secondary TTL trigger lines
or as a RefClock seconds signal for the timestamp option.

The eight MMCX coaxial connectors are directly mounted on the M2i base card. When plugged internally with rightangle MMCX connectors,
this options does not require any additional system slot. By default this option is delivered with a readily plugged additional bracket equipped
with SMB connectors, to have access to the lines from outside the system to easily connect with external equipment.

The internal connectors are mounted on two locations on the base card. The picture below shows the location of the MMCX connectors on
the card, the details of the connectors on the extra bracket are shown in the introductional part of this manual.

Different functions

Asynchronous Digital 1/0

This way of operating the option BaseXIO allows to asynchronously sample the data on the inputs or to generate asynchronous pattern on
the outputs. The eight available lines consist of two groups of buffers each driving or receiving 4 bits of digital data as the drawing is showing.

The data direction of each group can be individually
programmed to be either input or output.

™ © XIO[3..0 ™, 0 XIO[7..4
4 LL?/ 4 291 4 LL‘-‘(4 (741 As a result three different combinations are possible
when using BaseXIO as pure digital 1/O:

8 asynchronous digital inputs
¢ 8 asynchronous digital outputs
Direction0 Direction1 ¢ mixed mode with 4 inputs and 4 outputs

The table below shows the direction register and the possible values. To combine the values you can easily OR them bitwise.

Register Value Direction Description

SPC_XIO_DIRECTION 47100 r/w Defines groupwise the direction of the digital 1/O lines. Values can be combined by a bitwise OR.
XD_CHO_INPUT 0 Sets the direction of the lower group (bit D3...DO) to input.
XD_CH1_INPUT Sets the direction of the upper group (bit D7...D4) to input.

0
XD_CHO_OUTPUT 1 Sets the direction of the lower group (bit D3...DO) to output.
2

XD_CH1_OUTPUT Sets the direction of the upper group (bit D7...D4) to output.

124 M2i.20xx / M2i.20xx-exp Manual

Option BaseXIO Electrical specifications

Special Input Functions

This way of operating the option BaseXIO requires the lower of the above mentioned group of four lines (XIO3...XIOO0) to be set as input.
The upper group can be programmed fo be either input or output.

The four lower input bits then can have additional func-
tions besides working as asynchronous digital inputs:

<} O ExtraTrig0 o XIO[7..4]

1 o ExtraTrial 4 LL*‘(4 - XIOO0: additional TTL trigger ExtraTrigO
~J 9 ¢ XIO1: additional TTL trigger ExtraTrig1
i o RefClock o XIO2: RefClock for timestamp option
~ XIO3: no special feature yet

Direction1 All of the above mentioned special features are ex-
plained in detail in the relating section of this manual.

When using one or more of the inputs whith their special features, it is still possible to sample them asynchronously as descibed in the section
before. So as an example when using bit O as an additional TTL trigger input the remaining three lines of the input group can still be used as
asynchronous digital inputs. When reading the data of the inputs all bits are sampled, even those that are used for special purposes. In these
cased the user might mask the read out digital data manually, to not recieve unwanted lines.

The table below shows the direction register for the remaining upper group and the possible values. To combine the values for both groups
you can easily OR them bitwise.

Register Value Direction Description

SPC_XIO_DIRECTION 47100 read/write Defines the direction of the remaining digital 1/O lines.
XD_CHO_INPUT 0 The direction of the lower group (bit D3...DO) must be set to input, when using the special features.
XD_CH1_INPUT 0 Sets the direction of the upper group (bit D7...D4) to input.
XD_CH1_OUTPUT 2 Sets the direction of the upper group (bit D7...D4) to output.

Transfer Data

The outputs can be written or read by a single 32 bit register. If the register is read, the actual pin data will be sampled. Therefore reading
the lines declared as outputs gives back the generated pattern. The single bits of the digital 1/O lines correspond with the number of the bit
of the 32 bit register. Values written to the three upper bytes will be ignored.

Register Value Direction Description

SPC_XIO_DIGITALO 47110 r Reads the data directly from the pins of all digital I/O lines either if they are declared as inputs or
outputs.

SPC_XIO_DIGITALIO 47110 w Writes the data to all digital I/O lines that are declared as outputs. Bytes that are declared as inputs
will ignore the written data.

Programming Example

The following example shows, how to program the lower group to be input and the upper group to be output, and how to write and read
and inferpret/mask the digital data:

// Define direction: set ChO as Input and Chl as output
spem_dwSetParam 132 (hDrv, SPC_XIO DIRECTION, XD _CHO INPUT | XD_CHI_OUTPUT) ;

spcm_dwSetParam i32 (hDrv, SPC_XIO_ DIGITALIO, O0xAO); // Set all even output bits HIGH, all odd to LOW
// The write to the inputs will be ignored
spcm_dwGetParam 132 (hDrv, SPC_XIO DIGITALIO, &lData); // Read back the digital data (incl. outputs)
// Bits 7..4 will be the output value O0xA
lData = lData & (uint32) O0xOF // Mask out the output bits to have inputs only

Special Sampling Feature

When using the option BaseXIO in combination with the timestamp option one can enable a special auto sampling option, that samples the
eight BaseXIO lines synchronously with each trigger event. This feature is independent of the BaseXIO line settings. For details, please refer
to the timestamp chapter in this manual.

This special sampling feature requires the option Timestamp to be installed. A

Electrical specifications

The electrical specifications of the BaseXIO inputs and outputs can be found either in the technical data section of this manual or in the
datasheet.

(c) Spectrum GmbH 125

Star-Hub introduction Option Star-Hub

Option Star-Hub

Star-Hub introduction

The purpose of the Star-Hub is to extend the number of channels available for acquisition or generation by interconnecting multiple cards and
running them simultaneously. It is even possible to interconnect multiple systems using the system star-hubs described further below.

The Star-Hub option allows to synchronize

several cards of the M2i series that are : 'Thh""_b"“’d ““:" as [!
mounted within one host system (PC). Two ! 1h: e:gg;rbmm ern B L !
different versions are available: a small ver- O\o_ i
sion with 5 connectors (option SH5) for syn- | o ‘ o |
chronizing up fo five cards and a big : :
version with 16 connectors (option SH16) . .
for synchronizing up to 16 cards. ' Nt '

! vy v Star Hub Module !
Both versions are implemented as a piggy - ‘=== -FFA-TfFF-- 4 f---—--—--------------- -

back module that is mounted to one of the [
cards. For details on how to install several

cards including the one carrying the Star-
Hub module, please refer to the section on [E]Aer as dockmesie "R =777

hardware installation.

Either which of the two available Star-Hub
options is used, there will be no phase delay
between the sampling clocks of the synchro-
nized cards and either no delay between
the trigger events, if all synchronized cards run with the same sampling rate. Any one of the synchronized cards can be used as a clock
master and besides any card can be part of the trigger generation.

Star-Hub trigger engine
The trigger bus between an M2i
card and the Star-Hub option con-

sists of three lines. Two of them Card0 —

send the trigger information from T

the card’s trigger engine to the Cardd —| OR |—

Star-Hub and one line receives the o —

resulting trigger from the Star- Card15 —

Hub.

While the returned trigger is iden- AND
tical for all synchronized cards, Card0 —

the sent out trigger of every single — (static)
card depends on their trigger set- Cardd —| AND |

fings. | S

Two lines are used to send the trig- Card15—]

ger from the card to the Star-Hub
to provide the possibility to use
the same OR/AND conjunctions
for the resulting synchronization
trigger like on a card that runs on it's own.

System Master Starhub
(optional)

By this separation all OR masks of all synchronized cards are therefore extended to one big OR mask, while all AND masks of the synchro-
nized cards are extended to one overall AND mask. This allows to combine the various trigger sources of all synchronized cards with AND
and OR conditions and so to create highly complex trigger conditions that will certainly suit your application’s needs.

For details on the card’s trigger engine and the usage of the OR/AND trigger masks please refer to the relating section of this manual.

As an option it is also possible to synchronize multiple host systems each containing one Star-Hub module. These system slaves then will simply
listen on the trigger line from the system master and distribute it fo the connected cards. As this multi-system synchronization comes with some
limits on certain settings and also needs some special attention on synchronizing the application software as well, it is therefore described in
a separate section later in this manual.

126 M2i.20xx / M2i.20xx-exp Manual

Option Star-Hub Software Interface

Star-Hub clock engine

One of the cards can be the clock master for the complete

system. This can be any card of the system evenonecard |~ """" """ 77777070 Hortil Oplloh © © = g =7 ST TR R R RS S SRS 3
that does not contain the Star-Hub. As shown in the drawing
on the right the clock master can use any of it's clock sources 1 .fem¥rt® . [Star-Hub}

to be broadcasted to all other cards.
All cards including the clock master itself receive the distrib-

uted clock with equal phase information. This makes sure Ontion] " Obxtern
that there is no phase delay between the cards running with
the same speed.

> A/D
Each slave card can use an additional divider on the re- m

Extern ()

ceived Star-Hub clock. This allows to synchronize fast and PLL | e
slow cards in one system. [10 MHz | —

Software Interface

The software interface is similar to the card software interface that is explained earlier in this manual. The same functions and some of the
registers are used with the Star-Hub. The Star-Hub is accessed using it's own handle which has some extra commands for synchronization
set-up. All card functions are programmed directly on card as before. There are only a few commands that need to be programmed directly
to the Star-Hub for synchronization.

The software interface as well as the hardware supports multiple Star-Hubs in one system. Each set of cards connected by a Star-Hub then
runs totally independent. It is also possible to mix cards that are connected with the Star-Hub with other cards that run independent in one
system.

Star-Hub Initialization

The interconnection between the Star-Hubs is probed at driver load time and does not need to be programmed separately. Instead the cards
can be accessed using a logical index. This card index is only based on the ordering of the cards in the system and is not influenced by the
current cabling. It is even possible to change the cable connections between two system starts without changing the logical card order that
is used for Star-Hub programming.

The Star-Hub initialization must be done AFTER initialization of all cards in the system. Otherwise the inter-
connection won’t be received properly. A

The Star-Hubs are accessed using a special device name ,sync” followed by the index of the star-hub to access. The Star-Hub is handled
completely like a physical card allowing all functions based on the handle like the card itself.

Example with 4 cards and one Star-Hub (no error checking to keep example simple)

drv_handle hSync;
drv_handle hCard[4];

for (i = 0; i < 4; i++)
{
sprintf (s, "/dev/spcm%d", i);
hCard[i] = spcm_hOpen (s);
}
hSync = spcm _hOpen ("syncO");

spcm_vClose (hSync);
for (1 = 0; i < 4; i++)
spcm_vClose (hCard[il]);

When opening the Star-Hub the cable interconnection is checked. The Star-Hub may return an error if it sees internal cabling problems or if
the connection between Star-Hub and the card that holds the Star-Hub is broken. It can’t identify broken connections between Star-Hub and
other cards as it doesn’t know that there has to be a connection.

The synchronization setup is done using bit masks where one bit stands for one recognized card. All cards that are connected with a Star-
Hub are internally numbered beginning with 0. The number of connected cards as well as the connections of the star-hub can be read out
after initialization. For each card that is connected to the star-hub one can read the index of that card:

Register Value Direction Description

SPC_SYNC_READ_SYNCCOUNT 48990 read Number of cards that are connected to this Star-Hub
SPC_SYNC_READ_CARDIDXO 49000 read Index of card that is connected to star-hub logical index O (mask 0x0001)
SPC_SYNC_READ_CARDIDX1 49001 read Index of card that is connected to star-hub logical index 1 (mask 0x0002)
read

SPC_SYNC_READ_CARDIDX15 49015 read Index of card that is connected to star-hub logical index 15 (mask 0x8000)

(c) Spectrum GmbH 127

Software Interface Option Star-Hub

In standard systems where all cards are connected to one star-hub reading the star-hub logical index will simply return the index of the card
again. This results in bit O of star-hub mask being 1 when doing the setup for card O, bit 1 in star-hub mask being 1 when setting up card 1
and so on. On such systems it is sufficient to read out the SPC_SYNC_READ_SYNCCOUNT register to check whether the star-hub has found
the expected number of cards to be connected.

spcm_deetParam_i32 (hSync, SPC_SYNC_READ_SYNCCOUNT, &lSyncCount);
for (i = 0; i < 1SyncCount; i++)
{
spcm_dwGetParam i32 (hSync, SPC_SYNC_READ CARDIDXO + i, &lCardIdx);
printf ("star-hub logical index %d is connected with card %d\n"“, i, 1lCardIdx):;

}

In case of 4 cards in one system and all are connected with the star-hub this program except will return:

is connected with card 0
is connected with card 1
is connected with card 2
is connected with card 3

star-hub logical index
star-hub logical index
star-hub logical index
star-hub logical index

W N - o

Let's see a more complex example with two Star-Hubs and one independent card in one system. Star-Hub A connects card 2, card 4 and
card 5. Star-Hub B connects card O and card 3. Card 1 is running completely independent and is not synchronized at all:

card Star-Hub connection card handle star-hub handle card index in star-hub musl;‘ f?’r this card in
star-hul

card O - /dev/spcmO O (of star-hub B) 0x0001

card 1 - /dev/spcm]1 -

card 2 star-hub A /dev/spcm2 syncO O (of star-hub A) 0x0001

card 3 star-hub B /dev/spcm3 syncl 1 (of star-hub B) 0x0002

card 4 - /dev/spcm4 1 (of star-hub A) 0x0002

card 5 - /dev/spcm5 2 (of star-hub A) 0x0004

Now the program has to check both star-hubs:

for (j = 0; j < 1lStarhubCount; j++)

{

spcm_dwGetParam i32 (hSync[j], SPC_SYNC_READ_SYNCCOUNT, &lSyncCount);

for (i = 0; 1 < 1SyncCount; i++)
{
spcm_dwGetParam i32 (hSync[j], SPC_SYNC_READ_CARDIDX0 + i, &lCardIdx);
printf ("star-hub %c logical index %d is connected with card %d\n“, (! ? 'A’ : 'B’), i, lCardIdx);
}

printf ("\n");

}

In case of the above mentioned cabling this program except will return:

star-hub A logical index 0 is connected with card 2
star-hub A logical index 1 is connected with card
star-hub A logical index 2 is connected with card 5

S

star-hub B logical index 0 is connected with card 0
star-hub B logical index 1 is connected with card 3

For the following examples we will assume that 4 cards in one system are all connected to one star-hub to keep things easier.

Setup of Synchronization and Clock

The synchronization setup only requires two additional registers to enable the cards that are synchronized in the next run and to select a clock
master for the next run.

Register Value Direction Description
SPC_SYNC_ENABLEMASK 49200 read/write Mask of all cards that are enabled for the synchronization

The enable mask is based on the logical index explained above. It is possible to just select a couple of cards for the synchronization. All other
cards then will run independently. Please be sure to always enable the card on which the star-hub is located as this one is a must for the
synchronization.

Register Value Direction Description
SPC_SYNC_CLKMASK 49220 read/write Mask of the card that is the clock master, only one bit is allowed to be set

One of the enabled cards must be selected to be the clock master for the complete system. If you intend to run cards with different clock
speeds the clock master must have the highest clock as all other cards will derive their clock by dividing the master clock. The locally selected
clock source from the clock master is routed throughout the complete synchronized system.

128 M2i.20xx / M2i.20xx-exp Manual

Option Star-Hub Software Interface

When using external clock please be sure that the external clock stays within all limits of all synchronized
cards. Please take special care regarding the minimum and maximum frequencies as offending these may A
damage components on the cards!

In our example we synchronize all four cards and select card number 2 to be the clock master:

spcm_dwSetParam_i32 (hSync, SPC_SYNC_ENABLEMASK, O0x000F); // all 4 cards are masked
spcm_dwSetParam i32 (hSync, SPC_SYNC_CLKMASK, 0x0004); // card 2 is selected as clock master

// set the clock master to 1 MS/s internal clock
spcm_deetParam_i32 (hCard[2], SPC_CLOCKMODE, SPC_CM_INTPLL);
spcm_dwSetParam i32 (hCard[2], SPC_SAMPLEATE, MEGA(1));

// set all the slaves to run synchronously with 1 MS/s
spcm_dwSetParam i32 (hCard[0], SPC_SAMPLEATE, MEGA(1));
spcm_dwSetParam i32 (hCard[1], SPC_SAMPLEATE, MEGA(1));
spcm_dwSetParam i32 (hCard[3], SPC_SAMPLEATE, MEGA(1));

When running the slave cards with a divided clock it is simply necessary to write the desired sampling rate to this card. The synchronization
will automatically calculate the matching divider and set up all details internally:

// set the clock master to 1 MS/s internal clock
spcm_dwSetParam 132 (hCard[2], SPC_CLOCKMODE, SPC_CM_TINTPLL);
spcm_dwSetParam i32 (hCard[2], SPC_SAMPLEATE, MEGA(1));

// set all the slaves to run with 100 kS/s only

spcm_dwSetParam i32 (hCard[0], SPC_SAMPLEATE, KILO(100));
spcm_dwSetParam i32 (hCard[1], SPC_SAMPLEATE, KILO(100));
spcm_dwSetParam_i32 (hCard[3], SPC_SAMPLEATE, KILO(100));

steps of two. Values that are not matching will be calculated to the nearest matching value on start of the

The slaves can only run with a sampling rate divided from the master clock using a divider up to 8190 in f
synchronization.

Setup of Trigger

Setting up the trigger does not need any further steps of synchronization setup. Simply all trigger settings of all cards that have been enabled
for synchronization are connected together. All frigger sources and all trigger modes (except trigger delay) can be used on synchronization
as well.

Having positive edge of external trigger on card O to be the trigger source for the complete system needs the following setup:

spcm_dwSetParam i32 (hCard[0], SPC_TRIG_ORMASK, SPC_TMASK_EXTO) ;
spcm_dwSetParam i32 (hCard[0], SPC_TRIG_EXTO MODE, SPC_TM POS);

spcm_dwSetParam i32 (hCard[1], SPC_TRIG_ORMASK, SPC_TM NONE) ;
spcm_dwSetParam i32 (hCard[2], SPC_TRIG ORMASK, SPC_TM NONE);
spcm_dwSetParam i32 (hCard[3], SPC_TRIG ORMASK, SPC_TM NONE) ;

Assuming that the 4 cards are analog data acquisition cards with 4 channels each we can simply setup a synchronous system with all channels
of all cards being trigger source. The following setup will show how to set up all trigger events of all channels to be OR connected. If any of
the channels will now have a signal above the programmed trigger level the complete system will do an acquisition:

for (i = 0; i < 1SyncCount; i++)
{
int32 1AllChannels = (SPC_TMASKO CHO | SPC_TMASKO CH1 | SPC_TMASK CH2 | SPC_TMASK CH3);
spcm_dwSetParam i32 (hCard[i], SPC_TRIG_CH_ORMASKO, 1lAllChannels);
for (j = 0; j < 2; j++)
{

// set all channels to trigger on positive edge crossing trigger level 100
spcm_dwSetParam i32 (hCard[i], SPC_TRIG CHO MODE + j, SPC_TM POS);
spcm_dwSetParam i32 (hCard[i], SPC_TRIG_CHO_LEVELO + j, 100);

}

(c) Spectrum GmbH 129

Software Interface Option Star-Hub

Run the synchronized cards

Running of the cards is very simple. The star-hub acts as one big card containing all synchronized cards. All card commands have to be
omitted directly to the star-hub which will check the setup, do the synchronization and distribute the commands in the correct order to all
synchronized cards. The same card commands can be used that are also possible for single cards:

Register Value Direction Description
SPC_M2CMD 100 write only Executes a command for the card or data transfer
M2CMD_CARD_RESET 1h Performs a hard and software reset of the card as explained further above
M2CMD_CARD_WRITESETUP 2h Writes the current setup to the card without starting the hardware. This command may be useful if changing some

internal settings like clock frequency and enabling outputs.

M2CMD_CARD_START 4h Starts the card with all selected settings. This command automatically writes all settings to the card if any of the set-
tings has been changed since the last one was written. After card has been started none of the settings can be
changed while the card is running.

M2CMD_CARD_ENABLETRIGGER | 8h The trigger detection is enabled. This command can be either send together with the start command to enable trigger
immediately or in a second call after some external hardware has been started.

M2CMD_CARD_FORCETRIGGER | 10h This command forces a frigger even if none has been detected so far. Sending this command together with the start
command is similar to using the software trigger.

M2CMD_CARD_DISABLETRIGGER | 20h The trigger detection is disabled. All further trigger events are ignored until the trigger detection is again enabled.
When starting the card the trigger detection is started disabled.

M2CMD_CARD_STOP 40h Stops the current run of the card. If the card is not running this command has no effect.

M2CMD_CARD_FLUSHFIFO 80h Used to flush input FIFOs after the card has been stopped while an acquisition was running.

All other commands and settings need to be send directly to the card that it refers to.

This example shows the complete setup and synchronization start for our four cards:

spcm_dwSetParam_i32 (hSync, SPC_SYNC_ENABLEMASK, O0x000F); // all 4 cards are masked
spcm_dwSetParam i32 (hSync, SPC_SYNC_CLKMASK, 0x0004); // card 2 is selected as clock master

// to keep it easy we set all card to the same clock and disable trigger
for (1 = 0; 1 < 4; i++)
{
spcm_dwSetParam i32 (hCard[i], SPC_CLOCKMODE, SPC_CM_INTPLL) ;
spcm_dwSetParam i32 (hCard[i], SPC_SAMPLEATE, MEGA(1));
spcm_dwSetParam_i32 (hCard[i], SPC_TRIG_ORMASK, SPC_TM NONE) ;
}

// card 0 is trigger master and waits for external positive edge
spcm_dwSetParam i32 (hCard[0], SPC_TRIG_ORMASK, SPC_TMASK_EXTO) ;
spcm_deetParam_i32 (hCard[0], SPC_TRIG_EXTO_MODE, SPC_TM_POS) ;

// start the cards and wait for them a maximum of 1 second to be ready

spcm_deetParam_i32 (hSync, SPC_TIMEOUT, 1000);

spcm_dwSetParam_i32 (hSync, SPC_M2CMD, M2CMD_CARD_ START | M2CMD_CARD_ENABLETRIGGER) ;

if (spcm_dwSetParam i32 (hSync, SPC_M2CMD, M2CMD_CARD_WAITREADY) == ERR_TIMEOUT)
printf ("Timeout occured - no trigger received within time\n")

reached this state. However when synchronizing cards with different sampling rates or different memory siz-

f Using one of the wait commands for the star-hub will return as soon as the card holding the star-hub has
es there may be other cards that still haven’t reached this level.

Error Handling

The Star-Hub error handling is similar to the card error handling and uses the function spcm_dwGetErrorinfo_i32. Please see the example in
the card error handling chapter to see how the error handling is done.

Excluding cards from trigger synchronization

When synchronizing cards with the Star-Hub option it is possible and most likely to synchronize clock and trigger. For some applications it
can be useful to synchronize the sampling clock only for one or multiple cards. This can be useful, when acquisition cards are synchronized
together with one or multiple generation cards. When these cards are used to feed a DUT (device under test) with signals and the result/
reaction is to be recorded, it is often necessary that the generation is in progress before the acquisition can begin.

For such applications it is possible to exclude one or multiple of the synchronized cards from receiving the Star-Hub trigger:

Register Value Direction Description

SPC_SYNC_NOTRIGSYNCMASK 49210 read/write Bitmask that defines which of the connected cards is using it's own trigger engine as trigger source
instead of using the synchronization trigger. If set to 1, a card only uses the synchronization clock,
when set to O the card uses also the synchronization trigger. By default this mask is set to O for all
cards.

The following example shows, how to exclude certain cards from receiving the synchronization trigger:

spcm_dwSetParam_ 132 (hSync, SPC_SYNC NOTRIGSYNCMASK, 0x00000005); // Exclude cards 0 and 2 from sync trigger

130 M2i.20xx / M2i.20xx-exp Manual

Option Star-Hub Software Interface

By default all cards that are enabled for synchronization are set to take part in clock and trigger synchronization.

SH-Direct: using the Star-Hub clock directly without synchronization

Starting with driver version 1.26 build 1754 it is possible to use the clock from the star-hub just like an external clock and running one or
more cards totally independent of the synchronized card. The mode is p.e. useful if one has one or more output cards that run continuously
in a loop and are synchronized with star-hub and in addition to this one or more acquisition cards should make multiple acquisitions but using
the same clock.

It is also possible to run the ,slave” cards with a divied clock. Therefore please program a desired divided sampling rate in the
SPC_SAMPLERATE register (example: running the star-hub card with 10 MS/s and the independent cards with 1 MS/s). The sampling rate
is automatically adjusted by the driver to the next matching value.

What is necessary?

All cards need to be connected to the star-hub

The card(s) that should run independently can not hold the star-hub

The card(s) with the star-hub must be setup to synchronization even if it's only one card

The synchronized card(s) have to be started prior to the card(s) that run with the direct star-hub clock

Setup
At first all cards that should run synchronized with the star-hub are set-up exactly as explained before. The card(s) that should run indepen-
dently and use the star-hub clock need to use the following clock mode:

Register Value Direction Description
SPC_CLOCKMODE 20200 read/write Defines the used clock mode
I SPC_CM_SHDIRECT 128 Uses the clock from the star-hub as if this was an external clock
Example

In this example we have one generator card with the star-hub mounted running in a continuous loop and one acquisition card running inde-
pendently using the SH-Direct clock.

// setup of the generator card
spcm_dwSetParam 132 (hCard[0], SPC_CARDMODE, SPC_REP STD CONTINUOUS) ;

spcm_deetParam_i32 (hCard[0], SPC_CLOCKMODE, SPC_CM_INTPLL);
spcm_dwSetParam_i32 (hCard[0], SPC_SAMPLEATE, MEGA(1));
spcm_dwSetParam i32 (hCard[0], SPC_TRIG_ORMASK, SPC_TM_ SOFTWARE) ;

spcm_dwSetParam 132 (hSync, SPC_SYNC ENABLEMASK, 0x0001); // card 0 is the generator card
spcm_dwSetParam_i32 (hSync, SPC_SYNC_CLKMASK, 0x0001); //

// Setup of the acquisition card (waiting for external trigger)
spcm_dwSetParam i32 (hCard[1], SPC_CARDMODE, SPC_REC_STD_SINGLE) ;
spcm_dwSetParam i32 , SPC_CLOCKMODE, SPC_CM SHDIRECT) ;

(¥
spcm_dwSetParam_i32 (hCard[1], SPC_SAMPLEATE, MEGA(1));
spcm_dwSetParam i32 (hCard[1], SPC_TRIG_ORMASK, SPC_TMASK_EXTO) ;
spcm_deetParam_i32 (hCard[1], SPC_TRIG_EXTO_MODE, SPC_TM_POS) ;
// now start the generator card (sync!) first and then the acquisition card 2 times

spcm_deetParam_i32 (hSync, SPC_TIMEOUT, 1000);

spcm_dwSetParam_i32 (hSync, SPC_M2CMD, M2CMD_CARD_START | M2CMD_CARD_ENABLETRIGGER) ;

spcm_dwSetParam i32 (hCard[1], SPC_M2CMD, M2CMD_CARD_START | M2CMD_CARD ENABLETRIGGER | M2CMD_CARD WAITREADY) ;
spcm_dwSetParam i32 (hCard[1], SPC_M2CMD, M2CMD CARD_START | M2CMD_CARD ENABLETRIGGER | M2CMD_CARD WAITREADY) ;

(c) Spectrum GmbH 131

System Star-Hub Option Star-Hub

System Star-Hub

For the synchronization of several systems which each other, special system star-hubs are available. Besides their capability to synchronize
systems which each other they can also work as complete standard star-hubs as explained above.

Overview

Two different versions are
available: a master system
star-hub and a slave system-
star-hub. When using the sys-
tem synchronization feature
the slave systems simply act
as slaves only receiving clock
and frigger information. The
master system must generate
these clock and trigger infor-

Master System Slave System Slave System
{up to 15 cards) (5 cards) (5 cards)

—
aqjl» System

E T ave
_-Ip/ i :L:r\-HuI:
E , 1
g \

mation and routes them to all = o

slave systems. All cables are

made of equal length mini-

mizing any phase delay be- = e
tween the different channels. = b

An installed master system can be extended by further systems at any time until the maximum number of systems is reached. Each of the slave
systems as well as the master system can be extended by further cards until the maximum number of cards per system is reached.

Programming

For system star-hubs is not yet implemented...

132 M2i.20xx / M2i.20xx-exp Manual

Appendix

Error Codes

Appendix

Error Codes

The following error codes could occur when a driver function has been called. Please check carefully the allowed setup for the register and
change the seftings to run the program.

error name
ERR_OK
ERR_INIT

ERR_TYP

ERR_FNCNOTSUPPORTED
ERR_BRDREMAP

ERR_KERNELVERSION

ERR_HWDRVVERSION

ERR_ADRRANGE
ERR_INVALIDHANDLE
ERR_BOARDNOTFOUND
ERR_LASTERR

ERR_ABORT

ERR_BOARDLOCKED

ERR_REG
ERR_VALUE

ERR_FEATURE
ERR_SEQUENCE

ERR_READABORT
ERR_NOACCESS
ERR_TIMEOUT
ERR_CALLTYPE

ERR_EXCEEDSINT32

ERR_NOWRITEALLOWED
ERR_SETUP

ERR_CHANNEL
ERR_NOTIFYSIZE
ERR_RUNNING
ERR_ADJUST
ERR_PRETRIGGERLEN
ERR_DIRMISMATCH
ERR_POSTEXCDSEGMENT
ERR_SEGMENTINMEM

ERR_MULTIPLEPW
ERR_NOCHANNELPWOR

ERR_ANDORMASKOVRLAP
ERR_ANDMASKEDGE
ERR_ORMASKLEVEL

ERR_EDGEPERMOD

value (hex)
Oh
1h

3h

4h
5h

6h

7h

8h
%h
Ah
10h

20h

30h

100h
101h

102h
103h

104h
105h
107h
108h

10%h

10Ah
10Bh

110h
111h
120h
130h
140h
141h
142h
143h

144h
145h

146h
147h
148h

14%h

value (dec.) error description

0
1

3

10
16

32

48

256
257

267

272

273

288

304

320
321

323

324
325

326

327

328

Execution OK, no error.

An error occurred when initialising the given card. Either the card has already been opened by another pro-
cess or an hardware error occurred.

Initialisation only: The type of board is unknown. This is a critical error. Please check whether the board is
correctly plugged in the slot and whether you have the latest driver version.

This function is not supported by the hardware version.

The board index re map table in the registry is wrong. Either delete this table or check it carefully for double
values.

The version of the kernel driver is not matching the version of the DLL. Please do a complete reinstallation of
the hardware driver. This error normally only occurs if someone copies the driver library and the kernel
driver manually.

The hardware needs a newer driver version to run properly. Please install the driver that was delivered
together with the card.

One of the address ranges is disabled (fatal error), can only occur under Linux
The used handle is not valid.
A card with the given name has not been found.

Old Error waiting fo be read. Please read the full error information before proceeding. The driver is locked
until the error information has been read.

Abort of wait function. This return value just tells that the function has been aborted from another thread. The
driver library is not locked if this error occurs.

The card is already in access and therefore locked by another process. It is not possible to access one card
through multiple processes. Only one process can access a specific card at the time.

The register is not valid for this type of board.

The value for this register is not in a valid range. The allowed values and ranges are listed in the board spe-
cific documentation.

Feature (option) is not installed on this board. It's not possible to access this feature if it's not installed.

Command sequence is not allowed. Please check the manual carefully to see which command sequences
are possible.

Data read is not allowed after aborting the data acquisition.
Access to this register is denied. This register is not accessible for users.
A timeout occurred while waiting for an interrupt. This error does not lock the driver.

The access to the register is only allowed with one 64 bit access but not with the multiplexed 32 bit (high
and low double word) version.

The return value is int32 but the software register exceeds the 32 bit integer range. use double int32 or
int64 accesses instead, to get correct return values.

The register that should be written is a read-only register. No write accesses are allowed.

The programmed setup for the card is not valid. The error register will show you which setting generates the
error message. This error is returned if the card is started or the setup is written.

The channel number may not be accessed on the board: Either it is not a valid channel number or the chan-
nel is not accessible due to the actual setup (e.g. Only channel O is accessible in interlace mode)

The notify size of the last spcm_dwDefTransfer call is not valid. The notify size must be a multiple of the page
size of 4096. For data transfer it may also be a fraction of 4k in the range of 16, 32, 64, 128, 256, 512,
Tk or 2k. For ABA and timestamp the notify size can be 2k as a minimum.

The board is still running, this function is not available now or this register is not accessible now.
Automatic card calibration has reported an error. Please check the card inputs.

The calculated pretfrigger size (resulting from the user defined posttrigger values) exceeds the allowed limit.
The direction of card and memory transfer mismatch. In normal operation mode it is not possible to transfer
data from PC memory to card if the card is an acquisition card nor it is possible to transfer data from card
to PC memory if the card is a generation card.

The posttrigger value exceeds the programmed segment size in multiple recording/ABA mode. A delay of
the multiple recording segments is only possible by using the delay trigger!

Memsize is not a multiple of segment size when using Multiple Recording/Replay or ABA mode. The pro-
grammed segment size must match the programmed memory size.

Multiple pulsewidth counters used but card only supports one at the time

The channel pulsewidth on this card can’t be used together with the OR conjunction. Please use the AND
conjunction of the channel trigger sources.

Trigger AND mask and OR mask overlap in at least one channel. Each trigger source can only be used
either in the AND mask or in the OR mask, no source can be used for both.

One channel is activated for trigger detection in the AND mask but has been programmed to a trigger mode
using an edge trigger. The AND mask can only work with level trigger modes.

One channel is activated for trigger detection in the OR mask but has been programmed to a trigger mode
using a level trigger. The OR mask can only work together with edge trigger modes.

This card is only capable to have one programmed trigger edge for each module that is installed. It is not
possible to mix different trigger edges on one module.

(c) Spectrum GmbH

133

Error Codes Appendix

error name value (hex) value (dec.) error description

ERR_DOLEVELMINDIFF 14Ah 330 The minimum difference between low output level and high output level is not reached

ERR_STARHUBENABLE 14Bh 331 The card holding the star-hub must be enabled when doing synchronization

ERR_PCICHECKSUM 203h 515 The check sum of the card information has failed. This could be a critical hardware failure. Restart the sys-
tem and check the connection of the card in the slot.

ERR_MEMALLOC 205h 517 Internal memory allocation failed. Please restart the system and be sure that there is enough free memory.

ERR_EEPROMLOAD 206h 518 timeout occurred while loading information from the on-board eeprom. This could be a critical hardware
failure. Please restart the system and check the PCI connector.

ERR_CARDNOSUPPORT 207h 519 The card that has been found in the system seems to be a valid Spectrum card of a type that is supported by

the driver but the driver did not find this special type internally. Please get the latest driver from http://
www.spectrum-instrumentation.com and install this one.

ERR_FIFOHWOVERRUN 301h 769 Hardware buffer overrun in FIFO mode. The complete on-board memory has been filled with data and data
wasn't transferred fast enough to PC memory. If acquisition speed is smaller than the theoretical bus transfer
speed please check the application buffer and try to improve the handling of this one.

ERR_FIFOFINISHED 302h 770 FIFO transfer has been finished, programmed data length has been transferred completely.

ERR_STARHUB 320h 800 The auto routing function of the star-hub initialisation has failed. Please check whether all cables are
mounted correctly.

ERR_INTERNAL_ERROR FFFFh 65535 Internal hardware error detected. Please check for driver and firmware update of the card.

134 M2i.20xx / M2i.20xx-exp Manual

Continuous buffer for increased data transfer rate

Continuous buffer for increased data transfer rate

The continuous buffer has been added to the driver version 1.36. The continuous buffer is not available in
A older driver versions. Please update to the latest driver if you wish to use this function.

Background

All modern operating systems use a very complex memory management strategy that strictly separates between physical memory, kernel mem-
ory and user memory. The memory management is based on memory pages (normally 4 kByte = 4096 Bytes). All software only sees virtual
memory that is translated into physical memory addresses by a memory management unit based on the mentioned pages.

This will lead to the circumstance that although a user program allocated a larger memory block (as an example 1 MByte) and it sees the
whole 1 MByte as a virtually continuous memory area this memory is physically located as spread 4 kByte pages all over the physical memory.
No problem for the user program as the memory management unit will simply translate the virtual continuous addresses to the physically
spread pages totally transparent for the user program.

When using this virtual memory for a DMA transfer things become more complicated. The DMA engine of any hardware can only access
physical addresses. As a result the DMA engine has to access each 4 kByte page separately. This is done through the Scatter-Gather list. This
list is simply a linked list of the physical page addresses which represent the user buffer. All franslation and set-up of the Scatter-Gather list is
done inside the driver without being seen by the user. Although the Scatter-Gather DMA transfer is an advanced and powerful technology it
has one disadvantage: For each transferred memory page of data it is necessary to also load one Scatter-Gather entry (which is 16 bytes on
32 bit systems and 32 bytes on 64 bit systems). The little overhead to transfer (16/32 bytes in relation to 4096 bytes, being less than one
percent) isn't critical but the fact that the continuous data transfer on the bus is broken up every 4096 bytes and some different addresses
have to be accessed slow things down.

The solution is very simple: everything works faster if the user buffer is not only virtually continuous but also physically continuous. Unfortu-
nately it is not possible to get a physical continuous buffer for a user program. Therefore the kernel driver has to do the job and the user
program simply has to read out the address and the length of this continuous buffer. This is done with the function spcm_dwGetContBuf as
already mentioned in the general driver description. The desired length of the continuous buffer has to be programmed to the kernel driver
for load time and is done different on the different operating systems. Please see the following chapters for more details.

Next we'll see some measuring results of the data transfer rate with/without continuous buffer. You will find more results on different mother-
boards and systems in the application note number é ,Bus Transfer Speed Details”

Bus Transfer Speed Details (example system)

PCI 33 MHz slot PCI-X 66 MHz slot PCl Express x1 slot
Mode read write read write read write
User buffer 109 MB/s 107 MB/s 195 MB/s 190 MB/s 130 MB/s 138 MB/s
Continuous kernel buffer | 125 MB/s 122 MB/s 248 MB/s 238 MB/s 160 MB/s 170 MB/s
Speed advantage 15% 14% 27% 25% 24% 23%

Setup on Windows systems

The continuous buffer settings is done with the Spectrum Control Center us-
ing a setup located on the ,Support” page. Please fill in the desired con- 8] 21xl
tinuous buffer settings as MByte. After setting up the value the system needs
to be restarted as the allocation of the buffer is done during system boot

Card Support | versions | about |

—Debug Logging

time.
Log Level ILog all Errors LI
If the system cannot allocate the amount of memory it will divide the de- L .
X i X X i X og Path Ic.'l, J
sired memory by two and try again. This will continue until the system can
allocate a continuous buffer. Please note that this try and error routine will I™" Append Logaing to fil FileName [spemciry_debug. oot

need several seconds for each failed allocation try during boot up proce-
dure. During these tries the system will look like being crashed. It is then

recommended to change the buffer seftings to a smaller value to avoid the Continous Memary Allacation (ME) Je4
long waiting time during boot up.

—Kernel Registry Setting

Continuous buffer settings should not exceed 1/4 of system memory. Dur-
ing tests the maximum amount that could be allocated was 386 MByte of
continuous buffer on a system with 4 GByte memory installed.

Quit

Setup on Linux systems

On Linux systems the continuous buffer setting is done via the command line argument contmem_mb when loading the kernel driver module:

insmod spcm.ko contmem mb=4

(c) Spectrum GmbH 135

Continuous buffer for increased data transfer rate

As memory allocation is organized completely different compared to Windows the amount of data that is available for a continuous DMA
buffer is unfortunately limited to a maximum of 8 MByte. On most systems it will even be only 4 MBytes.

Usage of the buffer

The usage of the continuous memory is very simple. It is just necessary to read the start address of the continuous memory from the driver and
use this address instead of a self allocated user buffer for data transfer.

Function spcm_dwGetContBuf

This function reads out the internal continuous memory buffer if one has been allocated. If no buffer has been allocated the function returns
a size of zero and a NULL pointer.

uint32 _stdcall spcm_dwGetContBuf i64 (// Return value is an error code
drv_handle hDevice, // handle to an already opened device
uint32 dwBufType, // type of the buffer to read as listed above under SPCM BUF XXXX
void** ppvDataBuffer, // address of available data buffer
uint64* pawContBufLen) ; // length of available continuous buffer

uint32 _stdcall spcm dwGetContBuf i64m (// Return value is an error code

drv_handle hbDevice, // handle to an already opened device

uint32 dwBufType, // type of the buffer to read as listed above under SPCM BUF XXXX
void** ppvDataBuffer, // address of available data buffer

uint32* pdwContBufLenH, // high part of length of available continuous buffer

uint32* pdwContBufLenL) ; // low part of length of available continuous buffer

Please note that it is not possible to free the continuous memory for the user application.

Example
The following example shows a simple standard single mode data acquisition setup with the read out of data afterwards. To keep this example
simple there is no error checking implemented.

int32 1lMemsize = 16384; // recording length is set to 16 kSamples
spcm_dwSetParam i32 (hDrv, SPC CHENABLE, CHANNELO) ; // only one channel activated
spcm_dwSetParam i32 (hDrv, SPC_CARDMODE, SPC_REC_STD_SINGLE) ; // set the standard single recording mode
spcm_dwSetParam_i32 (hDrv, SPC_MEMSIZE, 1Memsize); // recording length

spcm_dwSetParam i32 (hDrv, SPC_POSTTRIGGER, 8192); // samples to acquire after trigger = 8k

// now we start the acquisition and wait for the interrupt that signalizes the end
SpcmideetParamii‘%Z (hDrv, SPC7M2CMD, M2CMD7CARD7$TART | M2CMD7CARD7ENAELETRIGGER | M2CMD7CARD7WAITREADY);

// we now try to use a continuous buffer for data transfer or allocate our own buffer in case there’s none
spcm_dwGetContBuf i64 (hDrv, SPCM BUF DATA, &pvData, &gwContBuflLen);
if (gwContBufLen == 0)

pvData = new intlé[lMemsize];

// read out the data
spcm_dwDefTransfer 164 (hDrv, SPCM BUF_DATA, SPCM_DIR CARDTOPC , 0, pvData, 0, 2 * 1Memsize);
SpcmideetParamii‘%Z (hDrv, SPC7M2CMD, MZCMDiDATAisTARTDMA | M2CMD7DATA7WAITDMA);

if (gwContBufLen == 0)
delete (pvData);

136 M2i.20xx / M2i.20xx-exp Manual

Register overview

Register overview

These tables give you an overview on all available registers for your card type and shortly explains them. Most of these registers are explained
in greater detail throughout the manual. Please use this register tables as a reference for programming.

Card information registers

Register Value Direction Description
SPC_PCITYP 2000 read Ty;l)e of card. Upper 16 bit show the series (M2i is 0x00030000), lower 16 bit show the type as hex
value
SPC_PCIVERSION 2010 read Base card version: the upper 16 bit show the hardware (PCB) version, the lower 16 bit show the firm-
ware version.
SPC_PCIEXTVERSION 2011 read Extension module version: the upper 16 bit show the hardware (PCB) version, the lower 16 bit show
the firmware version.
SPC_PCIMODULEVERSION 2012 read Module version: the upper 16 bit show the hardware (PCB) version, the lower 16 bit show the firm-
ware version.
SPC_PCIDATE 2020 read Production date: week in bit 31 to 16, year in bit 15 to O
SPC_CALIBDATE 2025 read Last calibration date: week in bit 31 to16, year in bit 15 to O
SPC_PCISERIALNO 2030 read Serial number of the board
SPC_PCISAMPLERATE 2100 read Maximum sampling rate in Hz as a 32 bit integer value
SPC_PCIMEMSIZE 2110 read _i64 Installed memory in bytes as a 64 bit integer value
SPC_PCIFEATURES 2120 read PCl feature register. Holds the installed features and options as a bitfield. All possible features are
shown in the below list
SPCM_FEAT_MUILTI 1h Is set if the option Multiple Recording / Multiple Replay is installed.
SPCM_FEAT_GATE 2h Is set if the option Gated Sampling / Gated Replay is installed.
SPCM_FEAT_DIGITAL 4h Is set if the option Digital Inputs / Digital Outputs is installed.
SPCM_FEAT_TIMESTAMP 8h Is set if the option Timestamp is installed.
SPCM_FEAT_STARHUB5 20h Is set on the card, that carries the star-hub piggy-back module for synchronizing up to 5 cards.
SPCM_FEAT_STARHUB16 40h Is set on the card, that carries the star-hub piggy-back module for synchronizing up to 16 cards.
SPCM_FEAT_ABA 80h Is set if the option ABA mode is installed.
SPCM_FEAT_BASEXIO 100h Is set if the extra XIO connectors are used for asynchronous digital I/O.
Register Value Direction Description
SPC_FNCTYPE 2001 read Returns the general function of the card as listed below
SPCM_TYPE_AI 1h The card is an analog input card (transient recorder, digitizer)
SPCM_TYPE_AO 2h The card is an analog output card (arbitrary waveform generator)
SPCM_TYPE_DI 4h The card is an digital input card
SPCM_TYPE_DO 8h The card is an digital output card (pattern generator)
SPCM_TYPE_DIO 10h The card is an digital input/output card
Register Value Direction Description
SPC_MIINST_MODULES 1100 read Returns the number of modules installed on the card (not counting extension)
SPC_MIINST_CHPERMODULE 1110 read Returns the number of channels that are available on each module
SPC_MIINST_BYTESPERSAMPLE 1120 read Returns the number of bytes that is needed for one sample
SPC_MIINST_BITSPERSAMPLE 1125 read Returns the number of bits that one sample has (A/D and D/A: resolution of converter)
SPC_MIINST_MINADCLOCK 1130 read Returns the minimum A/D or D/A clock in Hz that the converter can cope. This is the minimum
allowed external clock. For internal clocking, any sampling rate beneath this border will be using
oversampling.
SPC_MIINST_MAXADCLOCK 1140 read Returns the maximum sampling clock in Hz.
SPC_MIINST_QUARZ 1150 read returns frequency of the installed standard quartz in Hz.
SPC_MIINST_QUARZ2 1151 read Returns frequency of the installed optional queers 2 in Hz.
SPC_MIINST_ISDEMOCARD 1175 read Returns a value > zero if card is a demo card
SPC_GETDRVVERSION 1200 read Gives information about the driver library version. Bit 24 to 31 hold the mayor version, bit 16 to 23
the minor version and bit O to 15 the build number.
SPC_GETKERNELVERSION 1210 read Gives information about the kernel driver version. Bit 24 to 31 hold the mayor version, bit 16 to 23
the minor version and bit O to 15 the build number.
SPC_GETDRVTYPE 1220 read Gives information about what type of driver is actually used
DRVTYP_LINUX 1 Linux driver is used
DRVTYP_WDM 4 Windows WDM driver is used (only Windows 2000/XP/XP64/Vista).

(c) Spectrum GmbH 137

Register overview

Standard card setup and commands

Register Value Direction Description
SPC_M2CMD 100 write only Executes a command for the card or data transfer

M2CMD_CARD_RESET 1h Performs a hard and software reset of the card as explained further above

M2CMD_CARD_WRITESETUP 2h Writes the current setup to the card without starting the hardware. This command may be useful if changing some
internal settings like clock frequency and enabling outputs.

M2CMD_CARD_START 4h Starts the card with all selected settings. This command automatically writes all settings to the card if any of the set-
tings has been changed since the last one was written. After card has been started none of the settings can be
changed while the card is running.

M2CMD_CARD_ENABLETRIGGER | 8h The trigger detection is enabled. This command can be either send together with the start command to enable trigger
immediately or in a second call after some external hardware has been started.

M2CMD_CARD_FORCETRIGGER 10h This command forces a trigger even if none has been detected so far. Sending this command together with the start
command is similar to using the software trigger.

M2CMD_CARD_DISABLETRIGGER | 20h The trigger detection is disabled. All further trigger events are ignored until the trigger detection is again enabled.
When starting the card the trigger detection is started disabled.

M2CMD_CARD_STOP 40h Stops the current run of the card. If the card is not running this command has no effect.

M2CMD_CARD_FLUSHFIFO 80h Used to flush input FIFOs after the card has been stopped while an acquisition was running.

M2CMD_CARD_WAITPREFULL 1000h Acquisition modes only: the command waits until the pretrigger area has once been filled with data. After pretrigger
area has been filled the internal trigger engine starts to look fro trigger events if the trigger detection has been
enabled.

M2CMD_CARD_WAITTRIGGER 2000h Waits until the first trigger event has been detected by the card. If using a mode with multiple trigger events like Multi-
ple Recording or Gated Sampling there only the first trigger detection will generate an interrupt for this wait com-
mand.

M2CMD_CARD_WAITREADY 4000h Waits until the card has completed the current run. In an acquisition mode receiving this command means that all data
has been acquired. In an generation mode receiving this command means that the output has stopped.

M2CMD_DATA_STARTDMA 10000h Starts the DMA transfer for an already defined buffer. In acquisition mode it may be that the card hasn't received a
trigger yet, in that case the transfer start is delayed until the card receives the trigger event

M2CMD_DATA_WAITDMA 20000h Waits until the data transfer has ended or until at least the amount of bytes defined by notify size are available. This
wait function also takes the timeout parameter described above into account.

M2CMD_DATA_STOPDMA 40000h Stops a running DMA transfer. Data is invalid afterwards.

M2CMD_DATA_POLL 80000h Polls data without using DMA. It is not possible to mix DMA and polling mode.

M2CMD_EXTRA_STARTDMA 100000h Starts the DMA transfer for an already defined buffer for ABA data and timestamp data (shared buffer).

M2CMD_EXTRA_WAITDMA 200000h Waits until the data transfer of ABA and timestamp data has ended or until at least the amount of bytes defined by
notify size are available. This wait function also takes the timeout parameter described above into account.

M2CMD_EXTRA_STOPDMA 400000h Stops a running DMA transfer. Data is invalid afterwards.

M2CMD_EXTRA_POLL 800000h Polls data without using DMA. It is not possible to mix DMA and polling mode.

Register Value Direction Description
SPC_M2STATUS 110 read only Reads out the current status information

M2STAT_CARD_PRETRIGGER 1h Acquisition modes only: the pretrigger area has been filled.

M2STAT_CARD_TRIGGER 2h The first trigger has been detected.

M2STAT_CARD_READY 4h The card has finished it's run and is ready.

M2STAT_DATA_BLOCKREADY 100h The next data block as defined in the notify size is available. It is at least the amount of data available but it also can
be more data.

M2STAT_DATA_END 200h The data transfer has completed. This status information will only occur if the notify size is set to zero.

M2STAT_DATA_OVERRUN 400h The data transfer had on overrun (acquisition) or underrun (replay) while doing FIFO transfer.

M2STAT_DATA_ERROR 800h An internal error occurred while doing data transfer.

M2STAT_EXTRA_BLOCKREADY 1000h The next data block as defined in the notify size is available. It is at least the amount of data available for either ABA
data or timestamp data but it also can be more data.

M2STAT_EXTRA_END 2000h The data transfer has completed. This status information will only occur if the notify size is set to zero.

M2STAT_EXTRA_OVERRUN 4000h The data transfer had on overrun of either ABA data FIFO or timestamp data FIFO.

M2STAT_EXTRA_ERROR 8000h An internal error occurred while doing data transfer.

138

M2i.20xx / M2i.20xx-exp Manual

Register overview

Register Value Direction Description
SPC_DATA_AVAIL_USER_LEN 200 read Returns the number of currently to the user available bytes inside a sample data transfer.
SPC_DATA_AVAIL_USER_POS 201 read Returns the position as byte index where the currently available data samples start.
SPC_DATA_AVAIL_CARD_LEN 202 write Writes the number of bytes that the card can now use for sample data transfer again
SPC_ABA_AVAIL_USER_LEN 210 read Returns the number of currently to the user available bytes inside a ABA data transfer.
SPC_ABA_AVAIL_USER_POS 211 read Returns the position as byte index where the currently available ABA samples start.
SPC_ABA_AVAIL_CARD_LEN 212 write Writes the number of bytes that the card can now use for sample ABA transfer again
SPC_TS_AVAIL_USER_LEN 220 read Returns the number of currently to the user available bytes inside a timestamp data transfer.
SPC_TS_AVAIL_USER_POS 221 read Returns the position as byte index where the currently available timestamp samples start.
SPC_TS_AVAIL_CARD_LEN 222 write Writes the number of bytes that the card can now use for sample timestamp transfer again
SPC_MEMSIZE 10000 read/write Defines the used memory size in samples per channel for all standard modes, not used in FIFO.
SPC_SEGMENTSIZE 10010 read/write Multiple Recording: size of one segment, number of samples to be record after each trigger event.
Multiple Replay: size of one segment, number of samples to be generated after each trigger event
SPC_LOOPS 10020 read/write Defines the number of segments to be recorded/replayed in FIFO mode, a zero for endless
SPC_PRETRIGGER 10030 read/write Gated Sampling: Defines the number of samples to be recorded prior to the gate start.
Gated Replay: no function
SPC_ABADIVIDER 10040 read/write Acquisition: programs the divider which is used to sample slow ABA data if ABA option is installed
Replay: no function
SPC_POSTTRIGGER 10100 read/write Acquisition: sets the number of samples to be recorded after the trigger event has been detected.
Replay: no function.
Register Value Direction Description
SPC_CARDMODE 9500 read/write Defines the used operating mode, a read command will return the currently used mode.
SPC_AVAILCARDMODES 9501 read Returns a bitmap with all available modes on your card. The modes are listed below.

SPC_REC_STD_SINGLE Th Data acquisition to on-board memory for one single trigger event.

SPC_REC_STD_MULTI 2h Data acquisition to on-board memory for multiple trigger events. Each recorded segment has the same size. Only
available if option Multiple Recording is installed. this mode is described in greater detail in a special chapter about
the Multiple Recording option.

SPC_REC_STD_GATE 4h Data acquisition to on-board memory using an external Gate signal. Acquisition is only done as long as the gate sig-
nal has a programmed level. This mode is only available if the Gated Sampling option is installed. The mode is
described in greater detail in a special chapter about the Gated Sampling option.

SPC_REC_STD_ABA 8h Data acquisition to on-board memory for multiple trigger events. While the multiple trigger events are stored with pro-
grammed sampling rate the inputs are sampled continuously with a slower sampling speed. This mode is only avail-
able if the ABA mode option is installed. The mode is described in a special chapter about ABA mode option.

SPC_REC_FIFO_SINGLE 10h Continuous data acquisition for one single trigger event. The on-board memory is used completely as FIFO buffer.

SPC_REC_FIFO_MULTI 20h Continuous data acquisition for multiple trigger events. Only available if Multiple Recording option is installed.

SPC_REC_FIFO_GATE 40h Continuous data acquisition using an external gate signal. only available if Gated Sampling option is installed.

SPC_REC_FIFO_ABA 80h Continuous data acquisition for multiple trigger events together with continuous data acquisition with a slower sam-
pling clock. Only available if ABA mode option is installed

Register Value Direction Description

SPC_CHENABLE 11000 read/write Sets the channel enable information for the next card run.

SPC_CHCOUNT 11001 read Reads back the number of currently activated channels.

SPC_FILLSIZEPROMILLE 200910 read Returns the current fill size of the data FIFO in promille, granularity is 1000/16

SPC_TIMEOUT 295130 read/write Defines the timeout for any following wait command in a milli second resolution. Writing a zero to
this register disables the timeout.

Clock Settings

Register Value Direction Description

SPC_SAMPLERATE 20000 read/write Defines the sampling rate in Hz for internal sample rate generation. Read access return the currently
selected sampling rate that best matches the setup.

SPC_OVERSAMPLINGFACTOR 200123 read only Returns the oversampling factor for further calculations. If oversampling isn't active a 1 is returned.

SPC_CLOCKDIV 20040 read/write Register for sefting the internal clock divider. Values up to 8190 in steps of two are allowed.

SPC_CLOCKOUT 20110 read/write Enables clock output on external clock connector. Only possible with internal clocking.

SPC_CLOCK500HM 20120 read/write A , 1" enables the 50 Ohm termination at the external clock connector. Only possible, when using
the external connector as an input.

SPC_EXTERNRANGE 20130 read/write Defines the range of the actual fed in external clock. Use EXRANGE_LOW or EXRANGE_HIGH

SPC_REFERENCECLOCK 20140 read/write Programs the external reference clock in the range from 1 MHz to 125 MHz.

SPC_AVAILCLOCKMODES 20201 read Bitmask, in which all bits of the below mentioned clock modes are set, if available.

SPC_CLOCKMODE 20200 read/write Defines the used clock mode or reads out the actual selected one.

SPC_CM_INTPLL 1 Enables internal PLL with 10 MHz internal reference for sample clock generation

SPC_CM_QUARTZ1 2 Enables Quartz1 for sample clock generation

SPC_CM_QUARTZ2 4 Enables optional Quartz2 for sample clock generation

SPC_CM_EXTERNAL 8 Enables external clock input for direct sample clock generation

SPC_CM_EXTDIVIDER 16 Enables external clock input for divided sample clock generation

SPC_CM_EXTREFCLOCK 32 Enables internal PLL with external reference for sample clock generation

(c) Spectrum GmbH 139

Register overview

Trigger Settings

Register Value Direction Description
SPC_TRIG_AVAILORMASK 40400 r Bitmask, in which all bits of the below mentioned sources for the OR mask are set, if available.
SPC_TRIG_ORMASK 40410 r/w Defines the events included within the trigger OR mask of the card.
SPC_TMASK_SOFTWARE 1h Enables the software trigger for the OR mask. The card wm trigger immediately after start.
SPC_TMASK_EXTO 2h Enﬁgles the external triggerO for the OR mask. The card will trigger when the programmed condition for this input is
valid.
SPC_TMASK_EXT1 4h Enables the external trigger1 for the OR mask. This input is only available on digital cards. The card will trigger when
the programmed condition for this input is valid.
SPC_TMASK_XIO0 100h Enables the extra TTL trigger O for the OR mask. This input is only available when the option BaseXIO is installed.
SPC_TMASK_XIO1 200h Enables the extra TTL trigger 1 for the OR mask. This input is only available when the option BaseXIO is installed.
Register Value Direction Description
SPC_TRIG_AVAILANDMASK 40420 r Bitmask, in which all bits of the below mentioned sources for the AND mask are set, if available.
SPC_TRIG_ANDMASK 40430 r/w Defines the events included within the trigger AND mask of the card.
SPC_TMASK_EXTO 2h Enlogles the external triggerO for the AND mask. The card will trigger when the programmed condition for this input is
valid.
SPC_TMASK_EXT1 4h Enables the external trigger1 for the AND mask. This input is only available on digital cards. The card will trigger
when the programmed condition for this input is valid.
SPC_TMASK_XIO0 100h Enables the extra TTL trigger O for the OR mask. This input is only available when the option BaseXIO is installed.
SPC_TMASK_XIO1 200h Enables the extra TTL rigger 1 for the OR mask. This input is only available when the option BaseXIO is installed.
Register Value Direction Description
SPC_TRIG_EXT_AVAILMODES 40500 read Bitmask, in which all bits of the below mentioned modes for the external trigger are set, if available.
SPC_TRIG_EXTO_MODE 40510 read/write Defines the external TTL trigger mode for the external SMB connector (A/D and D/A boards only).
On digital boards this defines the TTL trigger mode for the trigger input of the first module (Mod A).
SPC_TRIG_EXT1_MODE 40511 read/write Defines the external TTL trigger mode for the trigger input of the second module (digital boards only).
SPC_TRIG_XIOO_MODE 40560 read/write Defines the trigger mode for the extra TTL input O. These trigger inputs are only available, when
option BaseXIO is installed.
SPC_TRIG_XIO1_MODE 40561 read/write Defines the trigger mode for the extra TTL input 1. These trigger inputs are only available, when
option BaseXIO is installed.
SPC_TM_POS 1h Sets the trigger mode for external TTL trigger to detect positive edges.
SPC_TM_NEG 2h Sets the trigger mode for external TTL trigger to detect negative edges
SPC_TM_BOTH 4h Sets the trigger mode for external TTL trigger to detect positive and negative edges
SPC_TM_HIGH 8h Sets the trigger mode for external TTL trigger to detect HIGH levels.
SPC_TM_LOW 10h Sets the trigger mode for external TTL trigger to detect LOW levels.
SPC_TM_POS | 4000001h Sets the trigger mode for external TTL trigger to detect HIGH pulses that are longer than a programmed pulsewidth.
SPC_TM_PW_GREATER
SPC_TM_POS | 2000001h Sets the trigger mode for external TTL trigger to detect HIGH pulses that are shorter than a programmed pulsewidth.
SPC_TM_PW_SMALLER
SPC_TM_NEG | 4000002h Sets the trigger mode for external TTL trigger to detect LOW pulses that are longer than a programmed pulsewidth.
SPC_TM_PW_GREATER
SPC_TM_NEG | 2000002h Sets the trigger mode for external TTL trigger to detect LOW pulses that are shorter than a programmed pulsewidth.
SPC_TM_PW_SMALLER
Register Value Direction Description
SPC_TRIG_OUTPUT 40100 read/write Enables the trigger output if internal trigger is detected
SPC_TRIG_TERM 40110 read/write A 1" sets the 50 Ohm termination, if the trigger connector is used as an input for external trigger sig-
nals. A ,0” sets the T MOhm termination
SPC_TRIG_EXT_AVAILPULSEWIDTH 44200 read Contains the maximum possible value, for the external trigger pulsewidth counter.
SPC_TRIG_EXTO_PULSEWIDTH 44210 read/write Sets the pulsewidth for external trigger in samples.
Register Value Direction Description
SPC_TRIG_AVAILDELAY 40800 read Contains the maximum available delay as a decimal integer value.
SPC_TRIG_DELAY 40810 read/write Defines the delay for the detected trigﬁer events.
Register Value Direction Description
SPC_TRIG_CH_AVAILORMASKO 40450 read Bitmask, in which all bits of the below mentioned sources/channels (0...31) for the channel OR mask
are set, if available.
SPC_TRIG_CH_AVAILORMASK 1 40451 read Bitmask, in which all bits of the below mentioned sources/ channels (32...63) for the channel OR
mask are set, if available.
SPC_TRIG_CH_ORMASKO 40460 read/write Includes the analog or digital channels (0...31) within the channel trigger OR mask of the card.
SPC_TRIG_CH_ORMASK1 40461 read/write Includes the analog or digital channels (32...63) within the channel trigger OR mask of the card.
SPC_TMASKO_CHO 1h Enables channelO (channel16) for recognition within the channel OR mask. m
SPC_TMASKO_CH1 2h Enables channell (channel17) for recognition within the channel OR mask.
SPC_TMASKO_CH2 4h Enables channel2 (channel18) for recognition within the channel OR mask.
SPC_TMASKO_CH3 8h Enables channel3 (channel19) for recognition within the channel OR mask.

140

M2i.20xx / M2i.20xx-exp Manual

Register overview

SPC_TMASKO_CH28 10000000h | Enables channel28 (channel60) for recognition within the channel OR mask.
SPC_TMASKO_CH29 20000000h | Enables channel29 (channel61 for recognition within the channel OR mask.
SPC_TMASKO_CH30 40000000h | Enables channel30 (channel62) for recognition within the channel OR mask.
SPC_TMASKO_CH31 80000000h | Enables channel31 (channel63) for recognition within the channel OR mask.
Register Value Direction Description
SPC_TRIG_CH_AVAILANDASKO 40470 read Bitmask, in which all bits of the below mentioned sources/channels (0...31) for the channel AND
mask are set, if available.
SPC_TRIG_CH_AVAILANDMASK 1 40471 read Bitmask, in which all bits of the below mentioned sources/ channels (32...63) for the channel AND
mask are set, if available.
SPC_TRIG_CH_ANDMASKO 40480 read/write Includes the analog or digital channels (0...31) within the channel trigger AND mask of the card.
SPC_TRIG_CH_ANDRMASK1 40481 read/write Includes the analog or digital channels (32...63) within the channel trigger AND mask of the card.
SPC_TMASKO_CHO 1h Enables channelO (channel16) for recognition within the channel AND mask.
SPC_TMASKO_CH1 2h Enables channel1 (channel17) for recognition within the channel AND mask.
SPC_TMASKO_CH2 4h Enables channel2 (channel18) for recognition within the channel AND mask.
SPC_TMASKO_CH3 8h Enables channel3 (channel19) for recognition within the channel AND mask.
SPC_TMASKO_CH28 10000000h | Enables channel28 (channel60) for recognition within the channel AND mask.
SPC_TMASKO_CH29 20000000h | Enables channel29 (channel61 for recognition within the channel AND mask.
SPC_TMASKO_CH30 40000000h | Enables channel30 (channelé2) for recognition within the channel AND mask.
SPC_TMASKO_CH31 80000000h | Enables channel31 (channel63) for recognition within the channel AND mask.
Register Value Direction Description
SPC_TRIG_CH_AVAILMODES 40600 read Bitmask, in which all bits of the below mentioned modes for the channel trigger are set, if available.
SPC_TRIG_CHO_MODE 40610 read/write Sets the trigger mode for channelO.
SPC_TRIG_CH1_MODE 40611 read/write Sets the trigger mode for channell.
SPC_TRIG_CH2_MODE 40612 read/write Sets the trigger mode for channel2.
SPC_TRIG_CH3_MODE 40613 read/write Sets the trigger mode for channel3.
SPC_TM_NONE Oh Channel is not used for trigger detection. This is as with the trigger masks another possibility for disabling channels.
SPC_TM_POS 1h Enables the trigger detection for positive edges
SPC_TM_NEG 2h Enables the trigger detection for negative edges
SPC_TM_BOTH 4h Enables the trigger detection for positive and negative edges
SPC_TM_HIGH 8h Enables the trigger detection for HIGH levels
SPC_TM_LOW 10h Enables the trigger detection for LOW levels
SPC_TM_POS | SPC_TM_PW_GREATER | 4000001h Enables the pulsewidth trigger detection for long positive pulses
SPC_TM_NEG | SPC_TM_PW_GREATER | 4000002h Enables the pulsewidth trigger detection for long negative pulses
SPC_TM_POS | SPC_TM_PW_SMALLER | 2000001h Enables the pulsewidth trigger detection for short positive pulses
SPC_TM_NEG | SPC_TM_PW_SMALLER | 2000002h Enables the pulsewidth trigger detection for short negative pulses
SPC_TM_STEEPPOS | 4000800h Enables the steepness trigger detection for flat positive pulses
SPC_TM_PW_GREATER
SPC_TM_STEEPNEG | 4001000h Enables the steepness trigger detection for flat negative pulses
SPC_TM_PW_GREATER
SPC_TM_STEEPPOS | 2000800h Enables the steepness trigger detection for steep positive pulses
SPC_TM_PW_SMALLER
SPC_TM_STEEPNEG | 2000800h Enables the steepness trigger detection for steep negative pulses
SPC_TM_PW_SMALLER
SPC_TM_WINENTER 20h Enables the window trigger for entering signals
SPC_TM_WINLEAVE 40h Enables the window trigger for leaving signals
SPC_TM_INWIN 80h Enables the window trigger for inner signals
SPC_TM_OUTSIDEWIN 100h Enables the window trigger for outer signals
SPC_TM_SPIKE 200h Enables the spike trigger mode. This mode is not availavle on all M2i boards.
SPC_TM_WINENTER | 4000020h Enables the window trigger for long inner signals
SPC_TM_PW_GREATER
SPC_TM_WINLEAVE | 4000040h Enables the window trigger for long outer signals
SPC_TM_PW_GREATER
SPC_TM_WINENTER | 2000020h Enables the window trigger for short inner signals
SPC_TM_PW_SMALLER
SPC_TM_WINLEAVE | 2000040h Enables the window trigger for short outer signals

SPC_TM_PW_SMALLER

(c) Spectrum GmbH 141

Register overview

Register Value Direction Description
SPC_TRIG_CHO_LEVELO 42200 read/write Defines the upper level (trigger level) for channel O
SPC_TRIG_CH1_LEVELO 42201 read/write Defines the upper level (trigger level) for channel 1
SPC_TRIG_CH2_LEVELO 42202 read/write Defines the upper level (trigger level) for channel 2
SPC_TRIG_CH3_LEVELO 42203 read/write Defines the upper level (trigger level) for channel 3
SPC_TRIG_CHO_LEVEL1 42300 read/write Defines the lower level (trigger level) for channel O
SPC_TRIG_CH1_LEVEL1 42301 read/write Defines the lower level (trigger level) for channel 1
SPC_TRIG_CH2_LEVEL1 42302 read/write Defines the lower level (trigger level) for channel 2
SPC_TRIG_CH3_LEVEL1 42303 read/write Defines the lower level (trigger level) for channel 3
SPC_TRIG_CHO_PULSEWIDTH 44101 read/write Sets the pulsewidth in samples for ch O trigger modes using pulsewidth counters
SPC_TRIG_CH1_PULSEWIDTH 44102 read/write Sets the pulsewidth in samples for ch 1 trigger modes using pulsewidth counters
SPC_TRIG_CH2_PULSEWIDTH 44103 read/write Sets the pulsewidth in samples for ch 2 trigger modes using pulsewidth counters
SPC_TRIG_CH3_PULSEWIDTH 44104 read/write Sets the pulsewidth in samples for ch 3 trigﬁer modes using pulsewidth counters
Registers for timestamp option
Register Value Direction Description
SPC_TIMESTAMP_STARTTIME 47030 read/write Return the reset time when using reference clock mode
SPC_TIMESTAMP_STARTDATE 47031 read/write Return the reset date when using reference clock mode
SPC_TIMESTAMP_TIMEOUT 47045 read/write Set's a timeout in milli seconds for waiting of an reference clock edge
SPC_TIMESTAMP_AVAILMODES 47001 read Returns all available modes as a bitmap. Modes are listed below
SPC_TIMESTAMP_CMD 47000 read/write Programs a timestamp mode and performs commands as listed below
SPC_TSMODE_DISABLE 0 Timestamp is disabled.
SPC_TS_RESET 1h The counters are reset. If reference clock mode is used this command waits for the edge the timeout time.
SPC_TSMODE_STANDARD 2h Standard mode, counter is reset by explicit reset command.
SPC_TSMODE_STARTRESET 4h Counter is reset on every card start, all imestamps are in relation to card start.
SPC_TSCNT_INTERNAL 100h Counter is running with complete width on sampling clock
SPC_TSCNT_REFCLOCKPOS 200h Cloulr(ﬂer is split, upper part is running with external reference clock positive edge, lower part is running with sampling
cloc
SPC_TSCNT_REFCLOCKNEG 400h Counter is split, upper part is running with external reference clock negative edge, lower part is running with sam-
pling clock
SPC_TSXIOACQ_ENABLE 4096 Enables the trigger synchronous acquisition of the BaseXIO inputs with every stored timestamp in the upper byte.
SPC_TSXIOACQ_DISABLE 0 The timestamp is filled up with leading zeros as a sign extension for positive values.

Registers for BaseXIO option

Register Value Direction Description
SPC_XIO_DIRECTION 47100 r/w Defines groupwise the direction of the digital 1/O lines. Values can be combined by a bitwise OR.
XD_CHO_INPUT 0 Sets the direction of the lower group (bit D3...DO) to input.
XD_CH1_INPUT 0 Sets the direction of the upper group (bit D7...D4) to input.
XD_CHO_OUTPUT 1 Sets the direction of the lower group (bit D3...DO) to output.
XD_CH1_OUTPUT 2 Sets the direction of the upper group (bit D7...D4) to output.
Register Value Direction Description
SPC_XIO_DIGITALIO 47110 r Reads the data directly from the pins of all digital 1/O lines either if they are declared as inputs or
outputs.
SPC_XIO_DIGITALIO 47110 w Writes the data to all digital I/O lines that are declared as outputs. Bytes that are declared as inputs
will ignore the written data.

142

M2i.20xx / M2i.20xx-exp Manual

Register overview

Registers for analog acquisition cards

Register Value Direction Description
SPC_READIRCOUNT 3000 read Informs about the number of the board’s calibrated input ranges.
SPC_READMAXOFFSET 3100 read Reads out the maximum input programmable offset in +percent.
SPC_READAIFEATURES 3101 read Returns a bitmap with available features of the analog input as listed below
SPCM_AI_TERM 1h Input channel has programmable terminaton (50 ohm)
SPCM_AI_SE 2h Input channel can be programmed fo single ended (if SPCM_AI_DIFF is not set, the channel is fixed to single ended)
SPCM_AI_DIFF 4h Input channel can be programmed to differential (if SPSCM_AI_SE is not set, the channel is fixed to differential)
SPCM_AI_OFFSPERCENT 8h Input offset of channel is programmed in percent of current input range
SPCM_AI_OFFSMV 10h Input offset of the channel can be programmed in mV as absolute offset
SPCM_AI_AUTOCALOFFS 1000h Automatic offset calibration in hardware available
SPCM_AI_AUTOCALGAIN 2000h Automatic gain calibration in hardware available
SPCM_AI_AUTOCALOFFSNOIN 4000h Automatic offset calibration in hardware available with open inputs (no signal is allowed to be connected)
Register Value Direction Description
SPC_READRANGEMINO 4000 read Gives back the minimum value of input range O in mV.
SPC_READRANGEMIN1 4001 read Gives back the minimum value of input range 1 in mV.
SPC_READRANGEMIN2 4002 read Gives back the minimum value of input range 2 in mV.
read
SPC_READRANGEMAXO 4100 read Gives back the maximum value of input range O in mV.
SPC_READRANGEMAX1 4101 read Gives back the maximum value of input range T in mV.
SPC_READRANGEMAX2 4102 read Gives back the maximum value of input range 2 in mV.
r
Register Value Direction Description
SPC_ADJ_LOAD 50000 write Loads the specified set of settings from the EEPROM. The default settings are automatically loaded,
when the driver is started.
read Reads out, what kind of settings have been loaded last.
SPC_ADJ_SAVE 50010 write Stores the actual settings to the specified set in the EEPROM. T
read Reads out, what kind of settings have been saved last.
SPC_ADJ_AUTOAD] 50020 write Performs the automatic offset compensation in the driver either for all input ranges or only the actual.
SPC_RELAISWAITTIME 200700 read/write Wait time in ms for relays settling before the start of the board. Default value is 50 ms.
Register Value Direction Description
SPC_OFFSO 30000 read/write Defines the input's offset and therefore shifts the input of channel 0.
SPC_AMPO 30010 read/write Defines the input range of channel 0 as mV. £1 V range will be programmed as 1000
SPC_OFFS1 30100 read/write Defines the input's offset and therefore shifts the input of channel 1.
SPC_AMP1 30110 read/write Defines the input range of channel 1 as mV. £1 V range will be programmed as 1000
SPC_OFFS2 30200 read/write Defines the input's offset and therefore shifts the input of channel 2.
SPC_AMP2 30210 read/write Defines the input range of channel 2 as mV. £1 V range will be programmed as 1000
SPC_OFFS3 30300 read/write Defines the input's offset and therefore shifts the input of channel 3.
SPC_AMP3 30310 read/write Defines the input range of channel 3 as mV. £1 V range will be programmed as 1000
Register Value Direction Description
SPC_500HMO 30030 read/write A, 1" sets the 50 ohm termination for channel 0. A ,0“ sets the termination to 1 MOhm.
SPC_500HM1 30130 read/write A 1" sets the 50 ohm termination for channel 1. A ,0” sets the termination to T MOhm.
SPC_500HM?2 30230 read/write A 1" sets the 50 ohm termination for channel 2. A ,0” sets the termination to T MOhm.
SPC_500HM3 30330 read/write A 1" sets the 50 ohm termination for channel 3. A ,0” sets the termination to T MOhm.

(c) Spectrum GmbH 143

Details on M2i cards clock and trigger /O section

Details on M2i cards clock and trigger 1/0 section

The SMB clock and trigger I/O connectors of the M2i
cards from Spectrum are protected against over voltage
conditions.

Ut 2.3

For this purpose clamping diodes of the types 1N4148
are used. Both 1/O lines are internally clamped to sig-
nal ground and to a specific clamping voltage named Trigger

Vt* for the trigger and Vc* for the clock line. So when 99 @
connecting sources with a higher level than the clamp-

ing voltage plus the forward voltage of typically A
0.6..0.7 V will be the resulting maximum high-level lev-

el.

Trigger I/0

7

..
E

Trigger Dutput Enable

The maximum forward current limit for the used
1N4148 diodes is 100 mA.

Ucx 3.3V
When connecting a high performance clock or trigger
source with the cards clock or trigger inputs, with logic
high levels above the clamping voltage please make
sure fo not exceed the current limit of the clamping di-

odes. Clock @

This can most easily be ensured, when using the cards
50 Ohm termination and a series resistor of 33 Ohm up
to 47 Ohm on the clock or trigger source.

—D—b
ez
7

Clock 1/0

Clock Output Enable

To avoid floating levels with unconnected inputs, a pull
up resistor of 4.7 kOhm to 3,3V on both lines is used.

e
E

The following table shows the values for the both clamp-
ing voltages Vt* and Vc*:

Card series Base Hardware Version | Vi* Vc*

M2i.xxxx <V20 3.3V 3.3V
M2i.xxxx > V20 50V 3.3V
M2i.xxxx-exp > V20 5.0V 3.3V

s+, For details on how fo read out the base hardware version from the driver or where to find that information on the cards type plate
' please look up the relating sections in this manual.

144 M2i.20xx / M2i.20xx-exp Manual

	Introduction
	Preface
	Overview
	General Information
	Different models of the M2i.20xx series
	Additional options
	Star-Hub
	BaseXIO (asynchronous digital I/O)

	The Spectrum type plate
	Hardware information
	Block diagram
	Technical Data
	Dynamic Parameters
	Order Information

	Hardware Installation
	System Requirements
	Warnings
	ESD Precautions
	Cooling Precautions
	Sources of noise

	Installing the board in the system
	Installing a single board without any options
	Installing a board with digital inputs/outputs
	Installing a board with option BaseXIO
	Installing multiple boards synchronized by star-hub

	Software Driver Installation
	Interrupt Sharing
	Windows 2000
	Installation
	Version control
	Driver - Update

	Windows XP 32/64 Bit
	Installation
	Version control
	Driver - Update

	Linux
	Overview
	Standard Driver Installation
	Standard Driver Update
	Compilation of kernel driver sources (option)
	Library
	Control Center

	Software
	Software Overview
	Card Control Center
	Hardware information
	Firmware information
	Driver information
	Installing and removing Demo cards
	Debug logging for support cases
	Feature upgrade
	Firmware upgrade
	Performing card calibration
	Performing memory test
	Transfer speed test

	Compatibility Layer
	Usage modes
	Abilities and Limitations of the compatibility DLL

	Accessing the cards with SBench 5.x
	C/C++ Driver Interface
	Header files
	General Information on Windows 64 bit drivers
	Microsoft Visual C++ 6.0 and 2005 32 Bit
	Microsoft Visual C++ 64 Bit
	Borland C++ Builder 32 Bit
	Linux Gnu C/C++ 32/64 Bit
	C++ for .NET
	Other Windows C/C++ compilers 32 Bit
	Other Windows C/C++ compilers 64 Bit
	National Instruments LabWindows/CVI

	Driver functions
	Borland Delphi (Pascal) Programming Interface
	Driver interface
	Examples

	Visual Basic Programming Interface and Examples
	Driver interface
	Examples

	.NET programming languages
	Library
	Declaration
	Using C#
	Using Managed C++/CLI
	Using VB.NET
	Using J#

	Programming the Board
	Overview
	Register tables
	Programming examples
	Initialization
	Error handling
	Gathering information from the card
	Card type
	Hardware version
	Production date
	Last calibration date
	Serial number
	Maximum possible sampling rate
	Installed memory
	Installed features and options
	Used type of driver

	Reset

	Analog Inputs
	Channel Selection
	Important note on channels selection

	Setting up the inputs
	Input ranges
	Input offset
	Input termination
	Automatic adjustment of the offset settings

	Acquisition modes
	Overview
	Setup of the mode

	Commands
	Card Status
	Acquisition cards status overview
	Generation card status overview
	Data Transfer

	Standard Single acquisition mode
	Card mode
	Memory, Pre- and Posttrigger
	Example

	FIFO Single acquisition mode
	Card mode
	Length and Pretrigger
	Difference to standard single acquisition mode

	Example
	Limits of pre trigger, post trigger, memory size
	Buffer handling

	Data organisation
	Sample format

	Clock generation
	Overview
	The different clock modes
	Clock Mode Register

	Internally generated sampling rate
	Standard internal sampling clock (PLL)
	Using plain Quartz1 without PLL
	Using plain Quartz2 without PLL (optional)
	External reference clock
	Oversampling

	External clocking
	Direct external clock
	External clock with divider

	Trigger modes and appendant registers
	General Description
	Trigger Engine Overview
	Trigger masks
	Trigger OR mask
	Trigger AND mask

	Software trigger
	Force- and Enable trigger
	Delay trigger
	External TTL trigger
	Edge and level triggers
	Pulsewidth triggers

	Channel Trigger
	Overview of the channel trigger registers
	Trigger level
	Pulsewidth counter
	Detailed description of the channel trigger modes

	Option Multiple Recording/Replay
	Recording modes
	Standard Mode
	FIFO Mode

	Limits of pre trigger, post trigger, memory size
	Multiple Recording and Timestamps
	Trigger Modes
	Trigger Output

	Programming examples

	Option Gated Sampling/Replay
	Acquisition modes
	Standard Mode
	FIFO Mode
	Limits of pre trigger, post trigger, memory size

	Gated Sampling and Timestamps
	Trigger
	Trigger Output
	Edge and level triggers
	Pulsewidth triggers
	Channel triggers modes

	Programming examples

	Option Timestamps
	General information
	Example for setting timestamp mode:
	Limits

	Timestamp modes
	Standard mode
	StartReset mode
	Refclock mode (needs BaseXIO option)

	Reading out the timestamps
	General
	Data Transfer using DMA
	Data Transfer using Polling
	Comparison of DMA and polling commands
	Data format

	Combination of Multiple Recording and Gated Sampling with Timestamps
	Multiple Recording and Timestamps
	Example Multiple Recording and Timestamps

	Gated Sampling and Timestamps
	Example Gated Sampling and Timestamps

	Option ABA mode (dual timebase)
	General information
	Standard Mode
	FIFO Mode
	Limits of pre trigger, post trigger, memory size
	Example for setting ABA mode:

	Reading out ABA data
	General
	Data Transfer using DMA
	Data Transfer using Polling
	Comparison of DMA and polling commands

	Option BaseXIO
	Introduction
	Different functions
	Asynchronous Digital I/O
	Special Input Functions
	Transfer Data
	Programming Example
	Special Sampling Feature

	Electrical specifications

	Option Star-Hub
	Star-Hub introduction
	Star-Hub trigger engine
	Star-Hub clock engine

	Software Interface
	Star-Hub Initialization
	Setup of Synchronization and Clock
	Setup of Trigger
	Run the synchronized cards
	Error Handling
	Excluding cards from trigger synchronization
	SH-Direct: using the Star-Hub clock directly without synchronization

	System Star-Hub
	Overview
	Programming

	Appendix
	Error Codes
	Continuous buffer for increased data transfer rate
	Background
	Setup on Windows systems
	Setup on Linux systems
	Usage of the buffer

	Register overview
	Card information registers
	Standard card setup and commands
	Clock Settings
	Trigger Settings
	Registers for timestamp option
	Registers for BaseXIO option
	Registers for analog acquisition cards

	Details on M2i cards clock and trigger I/O section

